Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1147, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307570

RESUMO

Protein degradation mediated by the ubiquitin-proteasome pathway regulates signaling events in many physiological and pathological conditions. In vitro degradation assays have been instrumental in the understanding of how cell proliferation and other fundamental cellular processes are regulated. These assays are direct, time-specific and highly informative but also laborious, typically relying on low-throughput polyacrylamide gel-electrophoresis followed by autoradiography or immunoblotting. We present protein degradation on chip (pDOC), a MITOMI-based integrated microfluidic technology for discovery and analysis of proteins degradation in cell-free extracts. The platform accommodates hundreds of microchambers on which protein degradation is assayed quickly, simultaneously and using minute amounts of reagents in one or many physiochemical environments. Essentially, pDOC provides a sensitive multiplex alternative to the conventional degradation assay, with relevance to biomedical and translational research associated with regulated proteolysis.


Assuntos
Microfluídica , Microfluídica/métodos , Proteólise , Extratos Celulares , Eletroforese em Gel de Poliacrilamida , Immunoblotting
2.
N Biotechnol ; 68: 1-8, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35026470

RESUMO

RNA guided nucleases are regarded as the future genome editing technologies. As such, they need to meet strong safety margins. Two major challenges in incorporating CRISPR technologies into the clinical world are off-target activity and editing efficiency. The common way to tackle such issues is to measure the binding and cleavage kinetics of the CRISPR enzyme. This can be challenging since, for example, DNA is not released from the CAS9 protein post cleavage. Here a promising new microfluidic approach to characterizing Enzymatic Interaction and Function of CRISPR complexes on a microfluidic platform (EnzyMIF) is presented. The method can rapidly detect the kd, koff, km and kcat for various RNA guided nucleases. In this work, two single guide RNAs with significantly different in-cell cleavage efficiency, RAG2 and RAG1, are used as proof-of-concept. The EnzyMIF assay results provide biochemical characterization of these guide RNAs that can explain the difference in cleavage using both wild type (WT) CAS9 and HiFi CAS9. Notably, it is shown that EnzyMIF characterization correlates with cell culture genomic editing efficiency results. It is suggested that EnzyMIF can predict the quality of cleavage rapidly and quantitatively.


Assuntos
Sistemas CRISPR-Cas , Microfluídica , Sistemas CRISPR-Cas/genética , Edição de Genes , Genômica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
3.
Commun Biol ; 2: 42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729180

RESUMO

Autophosphorylation of receptor and non-receptor tyrosine kinases is a common molecular switch with broad implications for pathogeneses and therapy of cancer and other human diseases. Technologies for large-scale discovery and analysis of autophosphorylation are limited by the inherent difficulty to distinguish between phosphorylation and autophosphorylation in vivo and by the complexity associated with functional assays of receptors kinases in vitro. Here, we report a method for the direct detection and analysis of tyrosine autophosphorylation using integrated microfluidics and freshly synthesized protein arrays. We demonstrate the efficacy of our platform in detecting autophosphorylation activity of soluble and transmembrane tyrosine kinases, and the dependency of in vitro autophosphorylation assays on membranes. Our method, Integrated Microfluidics for Autophosphorylation Discovery (IMAD), is high-throughput, requires low reaction volumes and can be applied in basic and translational research settings. To our knowledge, it is the first demonstration of posttranslational modification analysis of membrane protein arrays.


Assuntos
Ensaios de Triagem em Larga Escala , Técnicas Analíticas Microfluídicas/instrumentação , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/metabolismo , Membrana Celular/metabolismo , Biblioteca Gênica , Células HEK293 , Humanos , Fosforilação , Análise Serial de Proteínas , Proteínas Tirosina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA