Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38703036

RESUMO

OBJECTIVE: The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. METHODS: Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. RESULTS: The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. INTERPRETATION: We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.

2.
Brain Commun ; 6(3): fcae160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756539

RESUMO

Autosomal recessive pathogenetic variants in the DGUOK gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients. A systematic literature review from January 2001 to June 2023 was conducted. Physicians of research centres or clinicians all around the world caring for previously reported patients were contacted to provide followup information or additional clinical, biochemical, histological/histochemical, and molecular genetics data for unreported cases with a confirmed molecular diagnosis of deoxyguanosine kinase deficiency. A cohort of 202 genetically confirmed patients, 36 unreported, and 166 from a systematic literature review, were analyzed. Patients had a neonatal onset (≤ 1 month) in 55.7% of cases, infantile (>1 month and ≤ 1 year) in 32.3%, pediatric (>1 year and ≤18 years) in 2.5% and adult (>18 years) in 9.5%. Kaplan-Meier analysis showed statistically different survival rates (P < 0.0001) among the four age groups with the highest mortality for neonatal onset. Based on the clinical phenotype, we defined four different clinical subtypes: hepatocerebral (58.8%), isolated hepatopathy (21.9%), hepatomyoencephalopathy (9.6%), and isolated myopathy (9.6%). Muscle involvement was predominant in adult-onset cases whereas liver dysfunction causes morbidity and mortality in early-onset patients with a median survival of less than 1 year. No genotype-phenotype correlation was identified. Liver transplant significantly modified the survival rate in 26 treated patients when compared with untreated. Only six patients had additional mild neurological signs after liver transplant. In conclusion, deoxyguanosine kinase deficiency is a disease spectrum with a prevalent liver and brain tissue specificity in neonatal and infantile-onset patients and muscle tissue specificity in adult-onset cases. Our study provides clinical, molecular genetics and biochemical data for early diagnosis, clinical trial planning and immediate intervention with liver transplant and/or nucleoside supplementation.

3.
Genet Med ; 26(5): 101087, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288683

RESUMO

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Interneurônios , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Epilepsia/genética , Epilepsia/patologia , Masculino , Feminino , Interneurônios/metabolismo , Interneurônios/patologia , Criança , Pré-Escolar , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fenótipo , Mutação de Sentido Incorreto/genética , Heterozigoto , Adolescente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
4.
Brain ; 146(12): 4880-4890, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769650

RESUMO

Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about these disorders is limited. Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-related or benign. The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment strategies.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Insensibilidade Congênita à Dor , Humanos , Insensibilidade Congênita à Dor/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Mutação/genética
5.
Psychoneuroendocrinology ; 155: 106322, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423094

RESUMO

Stress triggers anticipatory physiological responses that promote survival, a phenomenon termed allostasis. However, the chronic activation of energy-dependent allostatic responses results in allostatic load, a dysregulated state that predicts functional decline, accelerates aging, and increases mortality in humans. The energetic cost and cellular basis for the damaging effects of allostatic load have not been defined. Here, by longitudinally profiling three unrelated primary human fibroblast lines across their lifespan, we find that chronic glucocorticoid exposure increases cellular energy expenditure by ∼60%, along with a metabolic shift from glycolysis to mitochondrial oxidative phosphorylation (OxPhos). This state of stress-induced hypermetabolism is linked to mtDNA instability, non-linearly affects age-related cytokines secretion, and accelerates cellular aging based on DNA methylation clocks, telomere shortening rate, and reduced lifespan. Pharmacologically normalizing OxPhos activity while further increasing energy expenditure exacerbates the accelerated aging phenotype, pointing to total energy expenditure as a potential driver of aging dynamics. Together, our findings define bioenergetic and multi-omic recalibrations of stress adaptation, underscoring increased energy expenditure and accelerated cellular aging as interrelated features of cellular allostatic load.


Assuntos
Alostase , Humanos , Alostase/fisiologia , Envelhecimento/fisiologia , Adaptação Fisiológica/fisiologia , Senescência Celular , Metabolismo Energético
6.
Commun Biol ; 6(1): 22, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635485

RESUMO

Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.


Assuntos
Doenças Mitocondriais , Fosforilação Oxidativa , Humanos , Longevidade , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
7.
Sci Data ; 9(1): 751, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463290

RESUMO

Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the "hallmarks of aging", with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/.


Assuntos
Envelhecimento , Fibroblastos , Humanos , Longevidade , Senescência Celular , Glicólise
8.
Nat Commun ; 13(1): 6841, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369169

RESUMO

Vesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding. Functional analysis demonstrates variably disruptive consequences of ARF3 variants on Golgi morphology, vesicles assembly and trafficking. Disease modeling in zebrafish validates further the dominant behavior of the mutants and their differential impact on brain and body plan formation, recapitulating the variable disease expression. In-depth in vivo analyses traces back impaired neural precursors' proliferation and planar cell polarity-dependent cell movements as the earliest detectable effects. Our findings document a key role of ARF3 in Golgi function and demonstrate its pleiotropic impact on development.


Assuntos
Transtornos do Neurodesenvolvimento , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo
9.
Biosci Rep ; 42(9)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36093993

RESUMO

Mitochondrial cytopathies, among which the Leigh syndrome (LS), are caused by variants either in the mitochondrial or the nuclear genome, affecting the oxidative phosphorylation process. The aim of the present study consisted in defining the molecular diagnosis of a group of Tunisian patients with LS. Six children, belonging to five Tunisian families, with clinical and imaging presentations suggestive of LS were recruited. Whole mitochondrial DNA and targeted next-generation sequencing of a panel of 281 nuclear genes involved in mitochondrial physiology were performed. Bioinformatic analyses were achieved in order to identify deleterious variations. A single m.10197G>A (p.Ala47Thr) variant was found in the mitochondrial MT-ND3 gene in one patient, while the others were related to autosomal homozygous variants: two c.1412delA (p.Gln471ArgfsTer42) and c.1264A>G (p.Thr422Ala) in SLC19A3, one c.454C>G (p.Pro152Ala) in SLC25A19 and one c.122G>A (p.Gly41Asp) in ETHE1. Our findings demonstrate the usefulness of genomic investigations to improve LS diagnosis in consanguineous populations and further allow for treating the patients harboring variants in SLC19A3 and SLC25A19 that contribute to thiamine transport, by thiamine and biotin supplementation. Considering the Tunisian genetic background, the newly identified variants could be screened in patients with similar clinical presentation in related populations.


Assuntos
Doença de Leigh , Biotina/genética , Criança , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doença de Leigh/terapia , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/genética , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , Tiamina
10.
Biomedicines ; 10(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884972

RESUMO

(1) Background: The development of mitochondrial medicine has been severely impeded by a lack of effective therapies. (2) Methods: To better understand Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-like episodes (MELAS) syndrome, neuronal cybrid cells carrying different mutation loads of the m.3243A > G mitochondrial DNA variant were analysed using a multi-omic approach. (3) Results: Specific metabolomic signatures revealed that the glutamate pathway was significantly increased in MELAS cells with a direct correlation between glutamate concentration and the m.3243A > G heteroplasmy level. Transcriptomic analysis in mutant cells further revealed alterations in specific gene clusters, including those of the glutamate, gamma-aminobutyric acid pathways, and tricarboxylic acid (TCA) cycle. These results were supported by post-mortem brain tissue analysis from a MELAS patient, confirming the glutamate dysregulation. Exposure of MELAS cells to ketone bodies significantly reduced the glutamate level and improved mitochondrial functions, reducing the accumulation of several intermediate metabolites of the TCA cycle and alleviating the NADH-redox imbalance. (4) Conclusions: Thus, a multi-omic integrated approach to MELAS cells revealed glutamate as a promising disease biomarker, while also indicating that a ketogenic diet should be tested in MELAS patients.

11.
Genes (Basel) ; 13(7)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35885985

RESUMO

Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial diseases, leading to blindness. It is caused by the chronic degeneration of the retinal ganglion cells (RGCs) and their axons forming the optic nerve. Until now, DOA has been mainly associated with genes encoding proteins involved in mitochondrial network dynamics. Using next-generation and exome sequencing, we identified for the first time heterozygous PMPCA variants having a causative role in the pathology of late-onset primary DOA in five patients. PMPCA encodes an α subunit of the mitochondrial peptidase (MPP), responsible for the cleavage and maturation of the mitochondrial precursor proteins imported from the cytoplasm into mitochondria. Recently, PMPCA has been identified as the gene responsible for Autosomal Recessive Cerebellar Ataxia type 2 (SCAR2) and another severe recessive mitochondrial disease. In this study, four PMPCA variants were identified, two are frameshifts (c.309delA and c.820delG) classified as pathogenic and two are missenses (c.1363G>A and c.1547G>A) classified with uncertain pathological significance. Functional assays on patients' fibroblasts show a hyperconnection of the mitochondrial network and revealed that frameshift variants reduced α-MPP levels, while not significantly affecting the respiratory machinery. These results suggest that alterations in mitochondrial peptidase function can affect the fusion-fission balance, a key element in maintaining the physiology of retinal ganglion cells, and consequently lead to their progressive degeneration.


Assuntos
Doenças Mitocondriais , Atrofia Óptica Autossômica Dominante , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Mitocondriais/genética , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/metabolismo , Atrofia Óptica Autossômica Dominante/patologia , Peptídeo Hidrolases , Peptidase de Processamento Mitocondrial
12.
Biomedicines ; 10(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892686

RESUMO

HIV-exposed uninfected (HEU) children show impaired health outcomes during childhood. A high rate of mitochondrial DNA (mtDNA) instability was reported in the blood of HEU at birth. We aimed to explore the relationship between these health outcomes and mtDNA deletions over time in a case series of 24 HEU children. MtDNA instability was assessed by deep sequencing and analyzed by eKLIPse-v2 algorithm at three time points, namely birth, 1 year, and 6 years of age. Association between mtDNA deletion and health outcomes, including growth, clinical, and neurodevelopmental parameters, were explored using univariate statistical analyses and after stratification with relevant variables. HEU children were selected with an equal male:female ratio. An elevated number of mtDNA deletions and duplications events was observed at 7 days' post-partum. Median heteroplasmy increased at one year of life and then returned to baseline by six years of age. The mtDNA instability was acquired and was not transmitted by the mother. No risk factors were significantly associated with mtDNA instability. In this small case series, we did not detect any association between any health outcome at 6 years and mtDNA instability measures. A significant effect modification of the association between the duration of maternal prophylaxis and child growth was observed after stratification with heteroplasmy rate. Genomic instability persists over time among HEU children but, despite its extension, stays subclinical at six years.

13.
Neurooncol Adv ; 4(1): vdab191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35118384

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive form of glioma. GBM frequently displays chromosome (chr) 7 gain, chr 10 loss and/or EGFR amplification (chr7+/chr10-/EGFRamp). Overall survival (OS) is 15 months after treatment. In young adults, IDH1/2 mutations are associated with longer survival. In children, histone H3 mutations portend a dismal prognosis. Novel reliable prognostic markers are needed in GBM. We assessed the prognostic value of mitochondrial DNA (mtDNA) copy number in adult GBM. METHODS: mtDNA copy number was assessed using real-time quantitative PCR in 232 primary GBM. Methylation of POLG and TFAM genes, involved in mtDNA replication, was assessed by bisulfite-pyrosequencing in 44 and 51 cases, respectively. RESULTS: Median age at diagnosis was 56.6 years-old and median OS, 13.3 months. 153/232 GBM (66 %) displayed chr7+/chr10-/EGFRamp, 23 (9.9 %) IDH1/2 mutation, 3 (1.3 %) H3 mutation and 53 (22.8 %) no key genetic alterations. GBM were divided into two groups, "Low" (n = 116) and "High" (n = 116), according to the median mtDNA/nuclear DNA ratio (237.7). There was no significant difference in OS between the two groups. By dividing the whole cohort according to the median age at diagnosis, OS was longer in the "High" vs "Low" subgroup (27.3 vs 15 months, P = .0203) in young adult GBM (n = 117) and longer in the "Low" vs "High" subgroup (14.5 vs 10.2 months, P = .0116) in older adult GBM (n = 115). POLG was highly methylated, whereas TFAM remained unmethylated. CONCLUSION: mtDNA copy number may be a novel prognostic biomarker in GBM, its impact depending on age.

14.
Ann Neurol ; 91(2): 225-237, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954817

RESUMO

OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.


Assuntos
Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/genética , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Distonia/enzimologia , Distonia/genética , Epilepsia/genética , Variação Genética , Humanos , Mitocôndrias/genética , Translocases Mitocondriais de ADP e ATP/genética , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Modelos Moleculares , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Proteômica , Sequenciamento do Exoma
15.
Sci Data ; 8(1): 205, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354088

RESUMO

Pathogenic variants of the aconitase 2 gene (ACO2) are responsible for a broad clinical spectrum involving optic nerve degeneration, ranging from isolated optic neuropathy with recessive or dominant inheritance, to complex neurodegenerative syndromes with recessive transmission. We created the first public locus-specific database (LSDB) dedicated to ACO2 within the "Global Variome shared LOVD" using exclusively the Human Phenotype Ontology (HPO), a standard vocabulary for describing phenotypic abnormalities. All the variants and clinical cases listed in the literature were incorporated into the database, from which we produced a dataset. We followed a rational and comprehensive approach based on the HPO thesaurus, demonstrating that ACO2 patients should not be classified separately between isolated and syndromic cases. Our data highlight that certain syndromic patients do not have optic neuropathy and provide support for the classification of the recurrent pathogenic variants c.220C>G and c.336C>G as likely pathogenic. Overall, our data records demonstrate that the clinical spectrum of ACO2 should be considered as a continuum of symptoms and refines the classification of some common variants.


Assuntos
Aconitato Hidratase/genética , Atrofia Óptica/genética , Fenótipo , Ontologia Genética , Humanos , Mutação
16.
J Clin Med ; 10(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071681

RESUMO

Worldwide, one million HIV-exposed uninfected (HEU) children are born yearly, and chronic health impairments have been reported in these children. Mitochondrial DNA (mtDNA) instability and altered mtDNA content have been evidenced in these children, but an exhaustive characterization of altered mitochondrial genomes has never been reported. We applied deep mtDNA sequencing coupled to the deletion identification algorithm eKLIPse to the blood of HEU neonates (n = 32), which was compared with healthy controls (n = 15). Dried blood spots (DBS) from African HEU children were collected seven days after birth between November 2009 and May 2012. DBS from French healthy controls were collected at birth (or <3 days of life) in 2012 and in 2019. In contrast to the absence of mtDNA instability observed at the nucleotide level, we identified significant amounts of heteroplasmic mtDNA deletions in 75% of HEU children and in none of controls. The heteroplasmy rate of the 62 mtDNA deletions identified varied from 0.01% to up to 50%, the highest rates being broadly compatible with bioenergetic defect and clinical expression. mtDNA integrity is commonly affected in HEU neonates. The nature of the deletions suggests a mechanism related to aging or tumor-associated mtDNA instability. This child population may be at risk of additional mtDNA genetic alterations considering that they will be exposed to other mitotoxic drugs including antiretroviral or anti-tuberculosis treatment.

17.
Brain Commun ; 3(2): fcab063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34056600

RESUMO

Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.

18.
Genet Med ; 23(9): 1769-1778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34040194

RESUMO

PURPOSE: Diseases caused by defects in mitochondrial DNA (mtDNA) maintenance machinery, leading to mtDNA deletions, form a specific group of disorders. However, mtDNA deletions also appear during aging, interfering with those resulting from mitochondrial disorders. METHODS: Here, using next-generation sequencing (NGS) data processed by eKLIPse and data mining, we established criteria distinguishing age-related mtDNA rearrangements from those due to mtDNA maintenance defects. MtDNA deletion profiles from muscle and urine patient samples carrying pathogenic variants in nuclear genes involved in mtDNA maintenance (n = 40) were compared with age-matched controls (n = 90). Seventeen additional patient samples were used to validate the data mining model. RESULTS: Overall, deletion number, heteroplasmy level, deletion locations, and the presence of repeats at deletion breakpoints were significantly different between patients and controls, especially in muscle samples. The deletion number was significantly relevant in adults, while breakpoint repeat lengths surrounding deletions were discriminant in young subjects. CONCLUSION: Altogether, eKLIPse analysis is a powerful tool for measuring the accumulation of mtDNA deletions between patients of different ages, as well as in prioritizing novel variants in genes involved in mtDNA stability.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Adulto , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Deleção de Sequência/genética
19.
Front Neurol ; 12: 602979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841295

RESUMO

Advances in next-generation sequencing (NGS) facilitate the diagnosis of genetic disorders. To evaluate its use for the molecular diagnosis of inherited optic neuropathy (ION), a blinding disease caused by the degeneration of retinal ganglion cells, we performed genetic analysis using targeted NGS of 22 already known and candidate genes in a cohort of 1,102 affected individuals. The panel design, library preparation, and sequencing reactions were performed using the Ion AmpliSeq technology. Pathogenic variants were detected in 16 genes in 245 patients (22%), including 186 (17%) and 59 (5%) dominant and recessive cases, respectively. Results confirmed that OPA1 variants are responsible for the majority of dominant IONs, whereas ACO2 and WFS1 variants are also frequently involved in both dominant and recessive forms of ION. All pathogenic variants were found in genes encoding proteins involved in the mitochondrial function, highlighting the importance of mitochondria in the survival of retinal ganglion cells.

20.
J Matern Fetal Neonatal Med ; 34(13): 2217-2220, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31510824

RESUMO

Desbuquois dysplasia is a very severe and sometimes lethal form of osteochondrodysplasia characterized by prenatal onset of severe micromelic short stature, joint laxity with multiple joint dislocations, specific radiographic features, and facial dysmorphism. Here, we report a case for which whole exome sequencing allowed early prenatal diagnosis of Desbuquois dysplasia before the detection of characteristic ultrasound signs of the disease.


Assuntos
Nanismo , Polidactilia , Anormalidades Craniofaciais , Feminino , Humanos , Instabilidade Articular , Ossificação Heterotópica , Gravidez , Diagnóstico Pré-Natal , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...