Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334316

RESUMO

Erucamide is known to play a critical role in modifying polymer fiber surface chemistry and morphology. However, its effects on fiber crystallinity and mechanical properties remain to be understood. Here, synchrotron nanofocused X-ray Diffraction (nXRD) revealed a bimodal orientation of the constituent polymer chains aligned along the fiber axis and cross-section, respectively. Erucamide promoted crystallinity in the fiber, leading to larger and more numerous lamellae crystallites. The nXRD nanostructual characterization is complemented by single-fiber uniaxial tensile tests, which showed that erucamide significantly affected fiber mechanical properties, decreasing fiber tensile strength and stiffness but enhancing fiber toughness, fracture strain, and ductility. To correlate these single-fiber nXRD and mechanical test results, we propose that erucamide mediated slip at the interfaces between crystallites and amorphous domains during stress-induced single-fiber crystallization, also decreasing the stress arising from the shear displacement of microfibrils and deformation of the macromolecular network. Linking the single-fiber crystal structure with the single-fiber mechanical properties, these findings provide the direct evidence on a single-fiber level for the role of erucamide in enhancing fiber "softness".

2.
J Colloid Interface Sci ; 658: 639-647, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134672

RESUMO

Whilst bottlebrush polymers have been studied in aqueous media for their conjectured role in biolubrication, surface forces and friction mediated by bottlebrush polymers in non-polar media have not been previously reported. Here, small-angle neutron scattering (SANS) showed that a diblock bottlebrush copolymer (oligoethyleneglycol acrylate/ethylhexyl acrylate; OEGA/EHA) formed spherical core-shell aggregates in n-dodecane (a model oil) in the polymer concentration range 0.1-2.0 wt%, with a radius of gyration Rg âˆ¼ 7 nm, comprising 40-65 polymer molecules per aggregate. The surface force apparatus (SFA) measurements revealed purely repulsive forces between surfaces bearing inhomogeneous polymer layers of thickness L âˆ¼ 13-23 nm, attributed to adsorption of a mixture of polymer chains and surface-deformed micelles. Despite the surface inhomogeneity, the polymer layers could mediate effective lubrication, demonstrating superlubricity with the friction coefficient as low as µ ∼ 0.003. The analysis of velocity-dependence of friction using the Eyring model shed light on the mechanism of the frictional process. That is, the friction mediation was consistent with the presence of nanoscopic surface aggregates, with possible contributions from a gel-like network formed by the polymer chains on the surface. These unprecedented results, correlating self-assembled polymer micelle structure with the surface forces and friction the polymer layers mediate, highlight the potential of polymers with the diblock bottlebrush architecture widespread in biological living systems, in tailoring desired surface interactions in non-polar media.

3.
Chemistry ; 29(61): e202302058, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37497813

RESUMO

The achievement of light-responsive behaviours is an important target for protocell engineering to allow control of fundamental protocellular processes such as communication via diffusible chemical signals, shape changes or even motility at the flick of a switch. As a step towards this ambitious goal, here we describe the synthesis of a novel poly(ethylene glycol)-based crosslinker, reactive towards nucleophiles, that effectively degrades with UV light (405 nm). We demonstrate its utility for the fabrication of the first protocell membranes capable of light-induced disassembly, for the photo-generation of patterns of protocells, and for the modulation of protocell membrane permeability. Overall, our results not only open up new avenues towards the engineering of spatially organised, communicating networks of protocells, and of micro-compartmentalised systems for information storage and release, but also have important implications for other research fields such as drug delivery and soft materials chemistry.


Assuntos
Células Artificiais , Células Artificiais/metabolismo , Polietilenoglicóis
4.
Nanoscale ; 14(34): 12265-12274, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-35861484

RESUMO

Lipoteichoic acid (LTA) is a major structural and functional molecule in the Gram-positive bacteria membrane. Knowledge of LTA adsorption at interfaces and its solution self-assembly is crucial to understanding its role in bacterial adhesion and colonisation, infections and inflammations. Here, we report the self-assembly behaviour of LTA extracted from Bacillus subtilis, a Gram-positive bacterium, in an aqueous solution using cryogenic transmission electron microscopy (Cryo-TEM) and small-angle neutron scattering (SANS) and its adsorption behaviour at the solid-liquid interface using atomic force microscopy (AFM) imaging and quartz crystal microbalance with dissipation monitoring (QCM-D). The Cryo-TEM results indicated the formation of spherical LTA micelles that decreased in size on addition of calcium chloride (CaCl2), attributed to charge neutralisation and possible formation of stable Ca2+-bridges between the phosphate groups on neighbouring LTA chains. Analysis of the SANS data from the polydisperse LTA aggregates in solution using the two Lorentzian model revealed the existence of two correlation lengths, which could respectively account for the presence of LTA micelle clusters and the local structure arising from LTA intra-molecular interactions. In the presence of CaCl2, the decrease in the correlation lengths of the clusters indicated possible disruption of H-bonding by Ca2+, leading to poorer water-LTA interactions. At higher temperatures, the correlation length corresponding to the clusters increased, indicating a temperature assisted growth caused by the fluidization of micellar core and dehydration of the polar LTA chains. AFM imaging showed that adsorption of LTA aggregates at the SiO2-water interface was significantly prompted by the addition of CaCl2, also confirmed by QCM-D measurements. These unprecedented nanoscopic structural details on the morphology of LTA aggregates in solution and at the solid-liquid interface add to our fundamental understanding of its self-assembly behaviour hitherto underexplored.


Assuntos
Bacillus subtilis , Dióxido de Silício , Cloreto de Cálcio/farmacologia , Lipopolissacarídeos , Micelas , Dióxido de Silício/farmacologia , Ácidos Teicoicos , Temperatura , Água
5.
J Colloid Interface Sci ; 606(Pt 2): 1064-1076, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487929

RESUMO

HYPOTHESIS: Neutral amphiphilic PEG-g-PVAc co-polymer (a "tardigrade" polymer consisting of a hydrophilic polyethylene glycol, PEG, backbone with hydrophobic polyvinyl acetate, PVAc, grafts) can form complexes at the air-water interface with cationic dodecyltrimethylammonium bromide (DTAB) via self-assembly. Compared to anionic SDS, cationic DTAB headgroups are expected to interact strongly with the negatively charged OH- groups from the partial dissociation of the PVAc grafts. We anticipate a transition from synergistic to competitive behaviour, which is expected to be dependent on the surfactant structural characteristics and concentration. EXPERIMENTS: DTAB/PEG-g-PVAc mixtures were investigated using a combination of dynamic and equilibrium surface tension measurements, neutron reflectivity (NR) at the air-water interface, and foaming tests. We varied the concentrations of both the DTAB (0.05 to 5 critical micelle concentration, cmc) and that of PEG-g-PVAc (0.2 and 2 critical aggregation concentration, cac). FINDINGS: Our results show that the interfacial interactions between DTAB and PEG-g-PVAc were both synergistic and antagonistic, depending sensitively on the surfactant concentration. At DTAB concentrations below its cmc, a pronounced cooperative adsorption behaviour was likely driven by the hydrophobic interactions between the DTAB tail and the PVAc grafts and the attraction between the DTAB headgroups and the partially dissociated -O- groups in the partially hydrolysed PVAc grafts, forming a mixed layer. This synergistic adsorption behaviour transitioned to a competitive adsorption behaviour at DTAB concentrations above its cmc, leading to polymer-surfactant partition, forming a "hanging" polymer layer underlying a surfactant monolayer at the interface. We postulate that DTAB/PEG-g-PVAc complexation in the bulk contributed to partial depletion of the mixture from the interface. We therefore consider this polymer/surfactant system to be a moderately interacting system at the air-water interface. No discernible differences in the foaming behaviour were observed between the DTAB/PEG-g-PVAc systems and the pure surfactant. Our results suggest that surfactant headgroup characteristics (particularly charges) were crucial in determining the structure and composition of polymer-surfactant complexes at the air-water interface, as well as the foamability and foam stability, whilst the coexistence of the synergistic and competitive adsorption behaviour is attributed to the unique architecture of the tardigrade polymer with amphiphilicity and partial charge, facilitating different surfactant-polymer interactions at different DTAB concentrations.


Assuntos
Polímeros , Tensoativos , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Tensão Superficial
6.
J Colloid Interface Sci ; 604: 91-103, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265695

RESUMO

Nanopillared surfaces have emerged as a promising strategy to combat bacterial infections on medical devices. However, the mechanisms that underpin nanopillar-induced rupture of the bacterial cell membrane remain speculative. In this study, we have tested three medically relevant poly(ethylene terephthalate) (PET) nanopillared-surfaces with well-defined nanotopographies against both Gram-negative and Gram-positive bacteria. Focused ion beam scanning electron microscopy (FIB-SEM) and contact mechanics analysis were utilised to understand the nanobiophysical response of the bacterial cell envelope to a single nanopillar. Given their importance to bacterial adhesion, the contribution of bacterial surface proteins to nanotopography-mediated cell envelope damage was also investigated. We found that, whilst cell envelope deformation was affected by the nanopillar tip diameter, the nanopillar density affected bacterial metabolic activities. Moreover, three different types of bacterial cell envelope deformation were observed upon contact of bacteria with the nanopillared surfaces. These were attributed to bacterial responses to cell wall stresses resulting from the high intrinsic pressure caused by the engagement of nanopillars by bacterial surface proteins. Such influences of bacterial surface proteins on the antibacterial action of nanopillars have not been previously reported. Our findings will be valuable to the improved design and fabrication of effective antibacterial surfaces.


Assuntos
Proteínas de Bactérias , Nanoestruturas , Bactérias , Aderência Bacteriana , Proteínas de Membrana , Propriedades de Superfície
7.
Phys Chem Chem Phys ; 23(20): 11672-11683, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978002

RESUMO

Glyceline, a deep eutectic solvent comprising glycerol and choline chloride, is a green nonaqueous solvent with potential industrial applications. Molecular mechanisms of surfactant self-assembly in deep eutectic solvents are expected to differ from those in their constituent polar components and are not well understood. Here we report the observation of self-assembled SDS fractal dendrites with dimensions up to ∼mm in glyceline at SDS concentrations as low as cSDS ∼ 0.1 wt%. The prevalence of these dendritic fractal aggregates led to the formation of a gel phase at SDS concentrations above ≥1.9 wt% (the critical gelation concentration cCGC). The gel microscopic structure was visualised using polarised light microscopy (PLM); rheology measurements confirmed the formation of a colloidal gel, where the first normal stress difference was negative and the elastic modulus was dominant. Detailed nano-structural characterisation by small-angle neutron scattering (SANS) further confirmed the presence of fractal aggregates. Such SDS aggregation or gelation has not been observed in water at such low surfactant concentrations, whereas SDS has been reported to form lamellar aggregates in glycerol (a component of glyceline). We attribute the formation of the SDS fractal dendrites to the condensation of counterions (i.e. the choline ions) around the SDS aggregates - a diffusion-controlled process, leading to the aggregate morphology observed. These unprecedented results shed light on the molecular mechanisms of surfactant self-assembly in deep eutectic solvents, important to their application in industrial formulation.

8.
Langmuir ; 37(21): 6521-6532, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015220

RESUMO

Understanding the nanostructure and nanomechanical properties of surface layers of erucamide, in particular the molecular orientation of the outermost layer, is important to its widespread use as a slip additive in polymer materials. Extending our recent observations of nanomorphologies of erucamide layers on a hydrophilic silica substrate, here we evaluate its nanostructure on a more hydrophobic polypropylene surface. Atomic force microscopy (AFM) imaging revealed the molecular packing, thickness, and surface coverage of the erucamide layers, while peak force quantitative nanomechanical mapping (QNM) showed that erucamide reduced the adhesive response on polypropylene. Synchrotron X-ray reflectivity (XRR) was used to probe the out-of-plane structure of the surface layers. Static contact angle measurements further corroborated on the resulting wettability, also demonstrating the efficacy of erucamide physisorption in facilitating control over polypropylene surface wetting. The results show the formation of erucamide monolayers, bilayers and multilayers, depending on the concentration in the spin-cast solution. Correlation of AFM, XRR and wettability results consistently points to the molecular orientation in the outermost layer, i.e. with the erucamide tails pointing outward for the surface nanostructures with different morphologies (i.e., bilayers and multilayers). Rare occurrence of monolayers with exposed hydrophilic head groups were observed only at the lowest erucamide concentration. Compared with our previous observations on the hydrophilic surface, the erucamide surface coverage was much higher on the more hydrophobic propylene surface at similar erucamide concentrations in the spin-cast solution. Furthermore, the structure, molecular orientation and nanomechanical properties of the spin-cast erucamide multilayers atop polypropylene were also similar to those on industrially relevant polypropylene fibers coated with erucamide via blooming. These findings shed light on the nanostructural features of the erucamide surface layer underpinning its nanomechanical properties, relevant to many applications in which erucamide is commonly used as a slip additive.

9.
J Colloid Interface Sci ; 590: 506-517, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33567375

RESUMO

HYPOTHESIS: Despite the widespread industrial usage of erucamide as a slip additive to modify polymer surface properties, a controversy appears to have persisted regarding the nanostructure of erucamide surface layers, particularly the molecular orientation at the outermost layer. The erucamide nanostructure and molecular orientation, along with its surface coverage, hydrophobicity, and adhesive response, can be tuned by simply varying the erucamide concentration in the solution from which the spin coated layer is prepared. EXPERIMENTS: Synchrotron X-ray reflectivity (XRR) allowed a comprehensive characterisation of the out-of-plane structural parameters (e.g. molecular packing and thickness) of the erucamide layers prepared via spin coating from nonaqueous solution on silica. Complementary Atomic Force Microscopy (AFM) imaging with high lateral resolution revealed localised in-plane structures. Contact angle measurements provided information on the wettability of erucamide-coated surfaces. Peak Force Quantitative Nanomechanical Mapping (QNM) allowed a correlation between the erucamide nanostructure with the surface nanomechanical properties (i.e. adhesive response). FINDINGS: Our results reveal erucamide surface nanostructures on silica as patchy monolayers, isolated circular bilayers/rounded rectangle-like aggregates and overlapping plate-like multilayers as the erucamide concentration in the spin coating solution was varied. In all the cases, XRR and AFM results were consistent with the picture that the erucamide tails were oriented outwards. The QNM adhesion force mapping of all the observed morphologies also supported this molecular orientation at the outermost erucamide monolayer. The wettability study further confirmed this conclusion with the observed increase in the surface hydrophobicity and coverage upon increasing erucamide concentration, with the macroscopic water contact angle θ = 92.9° ± 2.9° at the highest erucamide concentration of 2 wt%.

10.
Colloids Surf B Biointerfaces ; 199: 111551, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33387794

RESUMO

Lipoteichoic acid (LTA), a surface associated polymer amphiphile tethered directly to the Gram-positive bacterial cytoplasmic membrane, is a key structural and functional membrane component. Its composition in the membrane is regulated by bacteria under different physiological conditions. How such LTA compositional variations modulate the membrane structural stability and integrity is poorly understood. Here, we have investigated structural changes in mixed liposomes mimicking the lipid composition of Gram-positive bacteria membranes, in which the concentration of Bacillus Subtilis LTA was varied between 0-15 mol%. Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) measurements indicated formation of mixed unilamellar vesicles, presumably stabilized by the negatively charged LTA polyphosphates. The vesicle size increased with the LTA molar concentration up to ∼6.5 mol%, accompanied by a broadened size distribution, and further increasing the LTA concentration led to a decrease in the vesicle size. At 80 °C, SANS analyses showed the formation of larger vesicles with thinner shells. Complementary Cryo-TEM imaging confirmed the vesicle formation and the size increase with LTA addition, as well as the presence of interconnected spherical aggregates of smaller size at higher LTA concentrations. The results are discussed in light of the steric and electrostatic interactions of the bulky LTA molecules with increased chain fluidity at the higher temperature, which affect the molecular packing and interactions, and thus depend on the LTA composition, in the membrane.


Assuntos
Lipossomos , Ácidos Teicoicos , Bacillus subtilis , Bactérias Gram-Positivas , Lipopolissacarídeos
11.
Biochim Biophys Acta Gen Subj ; 1865(4): 129542, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31987955

RESUMO

BACKGROUND: Understanding the structure of hybrid nanoparticle-lipid multilayers is of fundamental importance to their bioanalytical applications and nanotoxicity, where nanoparticle-membrane interactions play an important role. Poly(amidoamine) (PAMAM) dendrimers are branched polymeric nanoparticles with potential biomedical applications due to precise tunability of their physicochemical properties. Here, the effect of PAMAM dendrimers (2.9-4.5 nm) with either a hydrophilic amine (NH2) or a hydrophobic C12 chain surface termination on the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilayers has been studied for the first time. METHODS: DOPC multilayers were created by the liposome-rupture method via drop-casting dendrimer-liposome dispersions with the dendrimers added at different concentrations and at three different stages. The multilayer structure was evaluated via the analysis of the synchrotron X-ray reflectivity (XRR) curves, obtaining the bilayer d-spacing, the coherence length from the Scherrer (Ls) analysis of the Bragg peaks, and the paracrystalline disorder parameter (g). RESULTS: Dendrimer addition led to lipid bilayer thinning and more disordered multilayer structures. Larger hydrophobic dendrimers caused greater structural disruption to the multilayers compared to the smaller dendrimers. The smallest, positively charged dendrimers at their highest concentration caused the most pronounced bilayer thinning. The dendrimer-liposome mixing method also affected the multilayer structure due to different dendrimer aggregation involved. CONCLUSIONS: These results show the complexity of the effect of dendrimer physicochemical properties and the addition method of dendrimers on the structure of mixed dendrimer-DOPC multilayers. GENERAL SIGNIFICANCE: These insights are useful for fundamental understanding of nanotoxicity and future biomedical application of nanocomposite multilayer materials in which nanoparticles are added for enhanced properties and functionality.


Assuntos
Dendrímeros/química , Bicamadas Lipídicas/química , Lipossomos/química , Fosfatidilcolinas/química , Interações Hidrofóbicas e Hidrofílicas
12.
J Colloid Interface Sci ; 583: 414-424, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011410

RESUMO

Frictional and nanomechanical properties of nanostructured polymer surfaces are important to their technological and biomedical applications. In this work, poly(ethylene terephthalate) (PET) surfaces with a periodic distribution of well-defined nanopillars were fabricated through an anodization/embossing process. The apparent surface energy of the nanopillared surfaces was evaluated using the Fowkes acid-base approach, and the surface morphology was characterized using scanning electron microscope (SEM) and atomic force microscope (AFM). The normal and lateral forces between a silica microparticle and these surfaces were quantified using colloidal probe atomic force microscopy (CP-AFM). The friction-load relationship followed Amonton's first law, and the friction coefficient appeared to scale linearly with the nanopillar height. Furthermore, all the nanopillared surfaces showed pronounced frictional instabilities compared to the smooth sliding friction loop on the flat control. Performing the stick-slip amplitude coefficient (SSAC) analysis, we found a correlation between the frictional instabilities and the nanopillars density, pull-off force and work of adhesion. We have summarised the dependence of the nanotribological properties on such nanopillared surfaces on five relevant parameters, i.e. pull-off force fp, Amontons' friction coefficient µ, RMS roughness Rq, stick-slip amplitude friction coefficient SSAC, and work of adhesion between the substrate and water Wadh in a radar chart. Whilst demonstrating the complexity of the frictional behaviour of nanopillared polymer surfaces, our results show that analyses of multiparametric nanotribological properties of nanostructured surfaces should go beyond classic Amontons' laws, with the SSAC more representative of the frictional properties compared to the friction coefficient.

13.
J Colloid Interface Sci ; 571: 398-411, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32247192

RESUMO

HYPOTHESIS: Thermal through-air bonding process and slip additive treatment affect fibre surface structure and nanomechanical properties, which is extremely difficult to characterise on a single-fibre level. EXPERIMENTS: Optical microscopy (OM) was applied to study the effect of air-through bonding, spunbonding, and crimping on fibre geometry and general appearance. A "spray-on" method developed here using a custom-designed fibre holder allowed a direct measurement of static contact angles of water droplets on single fibres. Scanning electron microscopy (SEM) showed different morphological features on the fibre due to the nonwoven fabric-making process and additive treatment. Synchrotron X-ray diffraction (XRD) was applied to study the effect of erucamide presence on polypropylene (PP) fibre crystal structure. Atomic force microscopy (AFM) imaging provided complementary characterization of fibre topographic features such as average surface roughness, along with adhesion force mapping by quantitative nanomechanical (QNM) AFM imaging. FINDINGS: Our results show the effect of nonwoven making process and surfactant additive treatment on the fibre surface structure and nanomechanical properties. Wettability experiment on the single fibre revealed the hydrophobic nature of all the synthetic fibres. For polyethylene/polyethylene terephthalate (PE/PET) bicomponent single fibres, the polyethylene sheath was found to possess fibrillar microstructure - typical for drawn fibres, whereas the fibres entangled in nonwoven fabrics exhibited a uniform, porous surface morphology attributed to the through-air process. Adhesion force mapping allowed us to correlate fibre nanomechanical properties with its topography, with surface pore interiors showing higher adhesion than the flat polyethylene region. Furthermore, on the polypropylene (PP) fibre surface treated with erucamide (13-cis-docosenamide; a common slip additive used in polyolefin film processing), we observed overlapping multilayers consisting of 4 nm erucamide bilayers, attributed to the slip additive migration onto the fibre surface. XRD measurements of the fibres did not detect the presence of erucamide; however, AFM imaging provided evidence for its migration to the fibre surface, imparting influence on the surface structure and adhesive properties of the fibre. Single-fibre AFM imaging also allowed a detailed analysis of different surface roughness parameters, revealing that both through-air bonding in the nonwoven making process and the slip additive (erucamide) treatment affected the fibre surface roughness. The wettability, surface morphology, and adhesion properties from this study, obtained with unprecedented resolution and details on single fibres, are valuable to informing rational design of fibre processing for fibre optimal properties, critically important in many industrial applications.

14.
J Colloid Interface Sci ; 572: 384-395, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32272313

RESUMO

HYPOTHESIS: Hydrogen-bonding capacities of polar nonaqueous media significantly affect self-assembly behaviours of surfactants in these media. INTRODUCTION: Glycerol, a nonaqueous hydrogen-bonding solvent, is widely used in industrial formulations due to its desirable physical properties. Surfactants are ubiquitous in such applications; however, surfactant self-assembly in glycerol is not well understood. METHODS: The microscopic structure of the gel phase was studied using a series of imaging techniques: polarised light microscopy (PLM), confocal laser scanning microscopy (CLSM), and environmental scanning electron microscopy (ESEM). The rheological properties of the gel were studied using viscometry and oscillation rheology measurements. Further nano-structural characterisation was carried out using small-angle neutron scattering (SANS). RESULTS: We have observed the unexpected formation of a microfibrillar gel in SDS and glycerol mixtures at a critical gelation concentration (CGC) as low as ~2 wt%; such SDS gelation has not been observed in aqueous systems. The microscopic structure of the gel consisted of microfibres some mm in length and with an average diameter of D ~ 0.5 µm. The fibres in the gel phase exhibited shear-induced alignment in the viscometry measurements, and oscillation tests showed that the gel was viscoelastic, with an elastic-dominated behaviour. Fitting to SANS profiles showed lamellar nano-structures in the gel microfibres at room temperature, transforming into cylindrical-micellar solutions above a critical gelation temperature, TCG ~ 45 °C. CONCLUSIONS: These unprecedented observations highlight the markedly different self-assembly behaviours in aqueous and nonaqueous H-bonding solvents, which is not currently well understood. Deciphering such self-assembly behaviour is key to furthering our understanding of self-assembly on a fundamental level.

15.
Acta Biomater ; 104: 198-209, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31904557

RESUMO

Understanding interactions between nanoparticles and model membranes is relevant to functional nano-composites and the fundamentals of nanotoxicity. In this study, the effect of polyamidoamine (PAMAM) dendrimers as model nanoparticles (NP) on the mesophase behaviour of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) has been investigated using high-pressure small-angle X-ray scattering (HP-SAXS). The pressure-temperature (p-T) diagrams for POPE mesophases in excess water were obtained in the absence and presence of G2 and G4 polyamidoamine (PAMAM) dendrimers (29 Å and 45 Å in diameter, respectively) at varying NP-lipid number ratio (ν = 0.0002-0.02) over the pressure range p = 1-3000 bar and temperature range T = 20-80 °C. The p-T phase diagram of POPE exhibited the Lß, Lα and HII phases. Complete analysis of the phase diagrams, including the relative area pervaded by different phases, phase transition temperatures (Tt) and pressures (pt), the lattice parameters (d-spacing), the pressure-dependence of d-spacing (Δd/Δp), and the structural ordering in the mesophase as gauged by the Scherrer coherence length (L) permitted insights into the size- and concentration-dependent interactions between the dendrimers and the model membrane system. The addition of dendrimers changed the phase transition pressure and temperature and resulted in the emergence of highly swollen lamellar phases, dubbed Lß-den and Lα-den. G4 PAMAM dendrimers at the highest concentration ν = 0.02 suppressed the formation of the HII phase within the temperature range studied, whereas the addition of G2 PAMAM dendrimers at the same concentration promoted an extended mixed lamellar region in which Lα and Lß phases coexisted. STATEMENT OF SIGNIFICANCE: Using high pressure small angle X-ray scattering in the pressure range 1-3000 bar and temperature range 20-60 °C, we have studied interactions between PAMAM dendrimers (as model nanoparticles) and POPE lipid mesophases (as model membranes). We report the pressure-temperature phase diagrams for the dendrimer-lipid mesophases for the first time. We find that the dendrimers alter the phase transition temperatures (Tt) and pressures (pt), the lattice parameters (d-spacing), and the structural order in the mesophase. We interpret these unprecedented results in terms of the fluidity of the lipid membranes and the interactions between the dendrimers and the membranes. Our findings are of fundamental relevance to the field of nanotoxicity and functional nanomaterials that integrate nanoparticles and organized lipid structures.


Assuntos
Dendrímeros/química , Lipídeos/química , Nanopartículas/química , Polímeros/química , Transição de Fase , Fosfatidiletanolaminas/química , Pressão , Temperatura de Transição
16.
ACS Appl Bio Mater ; 3(11): 8075-8083, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019547

RESUMO

Access to biocompatible hydrogels with tunable properties is of great interest in biomedical applications. Here we report the synthesis and characterization of a series of photo-cross-linked chitosan hydrogels from norbornene-functionalized chitosan (CS-nb) and various thiolated cross-linkers. The resulting materials were characterized by NMR, swelling ratio, rheology, SEM, and small angle neutron scattering (SANS) measurements. The hydrogels exhibited pH- and salt-dependent swelling, while the macro- and microscale properties could be modulated by the choice and degree of cross-linker or the polymer concentration. The materials could be molded in situ and loaded with small molecules that can be released overtime. Moreover, the incorporation of collagen in the hydrogels drastically improved cell adhesion, with excellent viabilities of human dermofibroblast cells on the hydrogels observed for up to 6 days, highlighting the potential use of these materials in the biomedical area.

17.
ACS Appl Bio Mater ; 3(8): 5253-5262, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021700

RESUMO

Access to biocompatible self-assembled gels and microgels is of great interests for a variety of biological applications from tissue engineering to drug delivery. Here, the facile synthesis of supramolecular hydrogels of norbornene (nb)-functionalized chitosan (CS-nb) via UV-triggered self-assembly in the presence of Irgacure 2959 (IRG) is reported. The in vitro stable hydrogels are injectable and showed pH-responsive swelling behavior, while their structure and mechanical properties could be tuned by tailoring the stereochemistry of the norbornene derivative (e.g., endo- or -exo). Interestingly, unlike other nb-type hydrogels, the gels possess nanopores within their structure, which might lead to potential drug delivery applications. A gelation mechanism was proposed based on hydrophobic interactions following the combination of IRG on norbornene, as supported by 1H NMR. This self-assembly mechanism was used to access microgels of size 100-150 nm, which could be further functionalized and showed no significant toxicity to human dermofibroblast cells.

18.
J Colloid Interface Sci ; 558: 78-84, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585224

RESUMO

Whilst nanocrystal gels may be formed via destabilization of pre-functionalized nanocrystal dispersions, gelation via assembly of unfunctionalized nanocrystals into fibrillar networks remains a significant challenge. Here, we show that gels with hierarchical microfibrillar networks are formed from anisotropic self-assembly of in situ-generated mesolamellar nanocrystals upon evaporation of ZnO nanofluids. The obtained gels display the thermo-reversible behavior characteristic of a non-covalent physical gel. We elucidate a three-stage gelation mechanism. In the pre-nucleation stage, the cloudy ZnO nanofluid transforms into a transparent stable suspension, comprising multi-branched networks of aggregates self-assembled from in situ-generated layered zinc hydroxide (LZH) nanocrystals upon solvent evaporation. In the subsequent nucleation and anisotropic 1D fibre growth stage, further evaporation triggers nucleation and growth of 1D nanofibers through reorganization of the nanocrystal aggregates, before rapid nanofibre bundling leading to microfibrillar networks in the ultimate gelation stage. Our results provide mechanistic insights for hierarchical self-assembly of nanocrystals into fibrillar gels and open up facile fabrication routes using reactive transition metal-oxide nanofluids for new functional fibres and gels.

19.
J Colloid Interface Sci ; 562: 409-417, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31806357

RESUMO

HYPOTHESIS: Supported lipid bilayers (SLBs) embedded with hydrophobic quantum dots (QDs) undergo temporal structural rearrangement. EXPERIMENTS: Synchrotron X-ray reflectivity (XRR) was applied to monitor the temporal structural changes over a period of 24 h of mixed SLBs of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) / 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine (POPE) intercalated with 4.9 nm hydrophobic cadmium sulphide quantum dots (CdS QDs). The QD-embedded SLBs (QD-SLBs) were formed via rupture of the mixed liposomes on a positively charged polyethylene imine (PEI) monolayer. Atomic force microscopy (AFM) imaging provided complementary characterization of the bilayer morphology. FINDINGS: Our results show time-dependent perturbations in the SLB structure due to the interaction upon QD incorporation. Compared to the SLB without QDs, at 3 h incubation time, there was a measurable decrease in the bilayer thickness and a concurrent increase in the scattering length density (SLD) of the QD-SLB. The QD-SLB then became progressively thicker with increasing incubation time, which - along with the fitted SLD profile - was attributed to the structural rearrangement due to the QDs being expelled from the inner leaflet to the outer leaflet of the bilayer. Our results give unprecedented mechanistic insights into the structural evolution of QD-SLBs on a polymer cushion, important to their potential biomedical and biosensing applications.


Assuntos
Bicamadas Lipídicas/química , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Pontos Quânticos/química
20.
J Colloid Interface Sci ; 561: 181-194, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830734

RESUMO

Understanding the structure of polymer/surfactant mixtures at the air-water interface is of fundamental importance and also of relevance to a variety of practical applications. Here, the complexation between a neutral 'tardigrade' comb co-polymer (consisting of a hydrophilic polyethylene glycol backbone with hydrophobic polyvinyl acetate grafts, PEG-g-PVAc) with an anionic surfactant (sodium dodecyl sulfate, SDS) at the air-water interface has been studied. Contrast-matched neutron reflectivity (NR) complemented by surface tension measurements allowed elucidation of the interfacial composition and structure of these mixed systems, as well as providing physical insights into the polymer/surfactant interactions at the air-water interface. For both polymer concentrations studied, below and above its critical aggregation concentration, cac, (0.2 cac and 2 cac, corresponding to 0.0002 wt% or 0.013 mM and 0.002 wt% or 0.13 mM respectively), we observed a synergistic cooperative behaviour at low surfactant concentrations with a 1-2 nm mixed interfacial layer; a competitive adsorption behaviour at higher surfactant concentrations was observed where the polymer was depleted from the air-water interface, with an overall interfacial layer thickness ~1.6 nm independent of the polymer concentration. The weakly associated polymer layer "hanging" proximally to the interface, however, played a role in enhancing foam stability, thus was relevant to the detergency efficacy in such polymer/surfactant mixtures in industrial formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...