Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Function (Oxf) ; 5(1): zqad066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38111538

RESUMO

Alzheimer's disease (AD) develops along a continuum that spans years prior to diagnosis. Decreased muscle function and mitochondrial respiration occur years earlier in those that develop AD; however, it is unknown what causes these peripheral phenotypes in a disease of the brain. Exercise promotes muscle, mitochondria, and cognitive health and is proposed to be a potential therapeutic for AD, but no study has investigated how skeletal muscle adapts to exercise training in an AD-like context. Utilizing 5xFAD mice, an AD model that develops ad-like pathology and cognitive impairments around 6 mo of age, we examined in vivo neuromuscular function and exercise adapations (mitochondrial respiration and RNA sequencing) before the manifestation of overt cognitive impairment. We found 5xFAD mice develop neuromuscular dysfunction beginning as early as 4 mo of age, characterized by impaired nerve-stimulated muscle torque production and compound nerve action potential of the sciatic nerve. Furthermore, skeletal muscle in 5xFAD mice had altered, sex-dependent, adaptive responses (mitochondrial respiration and gene expression) to exercise training in the absence of overt cognitive impairment. Changes in peripheral systems, specifically neural communication to skeletal muscle, may be harbingers for AD and have implications for lifestyle interventions, like exercise, in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/genética , Camundongos Transgênicos , Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Mitocôndrias/metabolismo
2.
J Appl Physiol (1985) ; 134(3): 515-520, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656981

RESUMO

Alzheimer's disease (AD) is the most common form of dementia affecting approximately 6.5 million people in the United States alone. The development of AD progresses over a span of years to possibly decades before resulting in cognitive impairment and clinically diagnosed AD. The time leading up to a clinical diagnosis is known as the preclinical phase, a time in which recent literature has noted a more severe loss of body mass and more specifically lean muscle mass and strength prior to diagnosis. Mitochondria dysfunction in neurons is also closely associated with AD, and mitochondrial dysfunction has been seen to occur in skeletal muscle with mild cognitive impairment prior to AD manifestation. Evidence from animal models of AD suggests a close link among skeletal muscle mass, mitochondria function, and cognition. Exercise is a powerful stimulus for improving mitochondria function and muscle health, and its benefits to cognition have been suggested as a possible therapeutic strategy for AD. However, evidence for beneficial effects of exercise in AD-afflicted populations and animal models has produced conflicting results. In this mini-review, we discuss these findings and highlight potential avenues for further investigation that may lead to the implementation of exercise as a therapeutic intervention to delay or prevent the development of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Cognição/fisiologia , Exercício Físico , Músculo Esquelético
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493662

RESUMO

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/ß2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Mitocôndrias/patologia , Mitofagia , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/genética , Animais , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...