Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113876, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446669

RESUMO

Alphaviruses are mosquito-transmitted pathogens that induce high levels of viremia, which facilitates dissemination and vector transmission. One prevailing paradigm is that, after skin inoculation, alphavirus-infected resident dendritic cells migrate to the draining lymph node (DLN), facilitating further rounds of infection and dissemination. Here, we assess the contribution of infiltrating myeloid cells to alphavirus spread. We observe two phases of virus transport to the DLN, one that occurs starting at 1 h post infection and precedes viral replication, and a second that requires replication in the skin, enabling transit to the bloodstream. Depletion of Ly6C+ monocytes reduces local chikungunya (CHIKV) or Ross River virus (RRV) infection in the skin, diminishes the second phase of virus transport to the DLN, and delays spread to distal sites. Our data suggest that infiltrating monocytes facilitate alphavirus infection at the initial infection site, which promotes more rapid spread into circulation.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Monócitos/patologia , Mosquitos Vetores , Febre de Chikungunya/patologia , Células Mieloides , Replicação Viral
2.
Sci Immunol ; 9(93): eadi4926, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457515

RESUMO

Lymph node (LN) germinal centers (GCs) are critical sites for B cell activation and differentiation. GCs develop after specialized CD169+ macrophages residing in LN sinuses filter antigens (Ags) from the lymph and relay these Ags into proximal B cell follicles. Many viruses, however, first reach LNs through the blood during viremia (virus in the blood), rather than through lymph drainage from infected tissue. How LNs capture viral Ag from the blood to allow GC development is not known. Here, we followed Zika virus (ZIKV) dissemination in mice and subsequent GC formation in both infected tissue-draining and non-draining LNs. From the footpad, ZIKV initially disseminated through two LN chains, infecting LN macrophages and leading to GC formation. Despite rapid ZIKV viremia, non-draining LNs were not infected for several days. Non-draining LN infection correlated with virus-induced vascular leakage and neutralization of permeability reduced LN macrophage attrition. Depletion of non-draining LN macrophages significantly decreased GC B cells in these nodes. Thus, although LNs inefficiently captured viral Ag directly from the blood, GC formation in non-draining LNs proceeded similarly to draining LNs through LN sinus CD169+ macrophages. Together, our findings reveal a conserved pathway allowing LN macrophages to activate antiviral B cells in LNs distal from infected tissue after blood-borne viral infection.


Assuntos
Infecção por Zika virus , Zika virus , Camundongos , Animais , Linfonodos , Viremia , Centro Germinativo , Macrófagos , Antígenos
4.
Virulence ; 13(1): 1049-1061, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35758052

RESUMO

Lassa fever (LF) is a neglected tropical disease that is caused by Lassa virus (LASV), a human hemorrhagic fever-causing mammarenavirus. A notable sequela of LF is sensorineural hearing loss (SNHL) that can develop in about 33% of the patients. Animal models of LF-associated SNHL have been limited in size and scope because LASV is a biosafety level 4 (BSL4) pathogen that requires its handling in a high biocontainment laboratory. In this report, we describe the development of an alternative arenavirus hearing loss model by infecting outbred Hartley guinea pigs with a virulent strain (rP18) of the Pichinde virus (PICV), which is a guinea pig-adapted mammarenavirus that has been used as a surrogate model of mammarenaviral hemorrhagic fevers in a conventional (BSL2) laboratory. By measuring auditory brainstem response (ABR) throughout the course of the virulent rP18 PICV infection, we noticed that some of the animals experienced an acute but transient level of hearing loss. Cochleae of hearing-impaired animals, but not of controls, had demonstrable viral RNA by quantitative RT-PCR, indicating the presence of virus in the affected inner ear with no overt histopathological changes. In contrast, neither the outbred Hartley guinea pigs infected with a known avirulent strain (rP2) of PICV nor those that were mock-infected showed any evidence of hearing loss or viral infection of the inner ear. This is the first report of an immunocompetent small animal model of mammarenavirus-induced hearing loss that can be used to evaluate potential therapeutics against virus-induced hearing impairment under a conventional laboratory setting.


Assuntos
Perda Auditiva , Febre Lassa , Vírus Pichinde , Animais , Modelos Animais de Doenças , Febre , Cobaias , Perda Auditiva/complicações , Humanos , Vírus Lassa , Vírus Pichinde/genética
5.
Front Immunol ; 12: 801811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925387

RESUMO

RIG-I and MDA5 are major cytoplasmic innate-immune sensor proteins that recognize aberrant double-stranded RNAs generated during virus infection to activate type 1 interferon (IFN-I) and IFN-stimulated gene (ISG) expressions to control virus infection. The roles of RIG-I and MDA5 in controlling replication of Pichinde virus (PICV), a mammarenavirus, in mice have not been examined. Here, we showed that MDA5 single knockout (SKO) and RIG-I/MDA5 double knockout (DKO) mice are highly susceptible to PICV infection as evidenced by their significant reduction in body weights during the course of the infection, validating the important roles of these innate-immune sensor proteins in controlling PICV infection. Compared to the wildtype mice, SKO and DKO mice infected with PICV had significantly higher virus titers and lower IFN-I expressions early in the infection but appeared to exhibit a late and heightened level of adaptive immune responses to clear the infection. When a recombinant rPICV mutant virus (rPICV-NPmut) that lacks the ability to suppress IFN-I was used to infect mice, as expected, there were heightened levels of IFN-I and ISG expressions in the wild-type mice, whereas infected SKO and DKO mice showed delayed mouse growth kinetics and relatively low, delayed, and transient levels of innate and adaptive immune responses to this viral infection. Taken together, our data suggest that PICV infection triggers activation of immune sensors that include but might not be necessarily limited to RIG-I and MDA5 to stimulate effective innate and adaptive immune responses to control virus infection in mice.


Assuntos
Infecções por Arenaviridae/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Receptores de Superfície Celular/imunologia , Animais , Camundongos , Camundongos Knockout , Vírus Pichinde/imunologia , Replicação Viral/imunologia
6.
Vaccines (Basel) ; 8(4)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202961

RESUMO

Vaccination is arguably the most cost-effective preventative measure against infectious diseases. While vaccines have been successfully developed against certain viruses (e.g., yellow fever virus, polio virus, and human papilloma virus HPV), those against a number of other important public health threats, such as HIV-1, hepatitis C, and respiratory syncytial virus (RSV), have so far had very limited success. The global pandemic of COVID-19, caused by the SARS-CoV-2 virus, highlights the urgency of vaccine development against this and other constant threats of zoonotic infection. While some traditional methods of producing vaccines have proven to be successful, new concepts have emerged in recent years to produce more cost-effective and less time-consuming vaccines that rely on viral vectors to deliver the desired immunogens. This review discusses the advantages and disadvantages of different viral vaccine vectors and their general strategies and applications in both human and veterinary medicines. A careful review of these issues is necessary as they can provide important insights into how some of these viral vaccine vectors can induce robust and long-lasting immune responses in order to provide protective efficacy against a variety of infectious disease threats to humans and animals, including those with zoonotic potential to cause global pandemics.

7.
Front Immunol ; 11: 583077, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101309

RESUMO

Despite the success of vaccination to greatly mitigate or eliminate threat of diseases caused by pathogens, there are still known diseases and emerging pathogens for which the development of successful vaccines against them is inherently difficult. In addition, vaccine development for people with compromised immunity and other pre-existing medical conditions has remained a major challenge. Besides the traditional inactivated or live attenuated, virus-vectored and subunit vaccines, emerging non-viral vaccine technologies, such as viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer innovative approaches to address existing challenges of vaccine development. They have also significantly advanced our understanding of vaccine immunology and can guide future vaccine development for many diseases, including rapidly emerging infectious diseases, such as COVID-19, and diseases that have not traditionally been addressed by vaccination, such as cancers and substance abuse. This review provides an integrative discussion of new non-viral vaccine development technologies and their use to address the most fundamental and ongoing challenges of vaccine development.


Assuntos
Betacoronavirus/imunologia , Doenças Transmissíveis Emergentes/prevenção & controle , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , COVID-19 , Vacinas contra COVID-19 , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/imunologia , Nanopartículas , SARS-CoV-2 , Vacinação , Vacinas de DNA/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia
8.
Viruses ; 12(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824946

RESUMO

Mammarenaviruses include several known human pathogens, such as the prototypic lymphocytic choriomeningitis virus (LCMV) that can cause neurological diseases and Lassa virus (LASV) that causes endemic hemorrhagic fever infection. LASV-infected patients show diverse clinical manifestations ranging from asymptomatic infection to hemorrhage, multi-organ failures and death, the mechanisms of which have not been well characterized. We have previously shown that the matrix protein Z of pathogenic arenaviruses, including LASV and LCMV, can strongly inhibit the ability of the innate immune protein RIG-I to suppress type I interferon (IFN-I) expression, which serves as a mechanism of viral immune evasion and virulence. Here, we show that Z proteins of diverse LASV isolates derived from rodents and humans have a high degree of sequence variations at their N- and C-terminal regions and produce variable degrees of inhibition of human RIG-I (hRIG-I) function in an established IFN-ß promoter-driven luciferase (LUC) reporter assay. Additionally, we show that Z proteins of four known LCMV strains can also inhibit hRIG-I at variable degrees of efficiency. Collectively, our results confirm that Z proteins of pathogenic LASV and LCMV can inhibit hRIG-I and suggest that strain variations of the Z proteins can influence their efficiency to suppress host innate immunity that might contribute to viral virulence and disease heterogeneity.


Assuntos
Proteína DEAD-box 58/imunologia , Febre Lassa/imunologia , Febre Lassa/virologia , Vírus Lassa/imunologia , Receptores Imunológicos/imunologia , Proteínas Virais/imunologia , Motivos de Aminoácidos , Linhagem Celular , Proteína DEAD-box 58/genética , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interferon beta/genética , Interferon beta/imunologia , Febre Lassa/genética , Vírus Lassa/química , Vírus Lassa/classificação , Vírus Lassa/genética , Vírus da Coriomeningite Linfocítica/química , Vírus da Coriomeningite Linfocítica/classificação , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/imunologia , Receptores Imunológicos/genética , Proteínas Virais/química , Proteínas Virais/genética
9.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462569

RESUMO

Several mammarenaviruses can cause deadly hemorrhagic fever infections in humans, with limited preventative and therapeutic measures available. Arenavirus cell entry is mediated by the viral glycoprotein (GP) complex, which consists of the stable signal peptide (SSP), the receptor-binding subunit GP1, and the transmembrane subunit GP2. The GP2 cytoplasmic tail (CT) is relatively conserved among arenaviruses and is known to interact with the SSP to regulate GP processing and membrane fusion, but its biological role in the context of an infectious virus has not been fully characterized. Using a Pichinde virus (PICV) GP expression vector and a PICV reverse genetics system, we systematically characterized the functional roles of 12 conserved residues within the GP2 CT in GP processing, trafficking, assembly, and fusion, as well as in viral replication. Except for P478A and K505A R508A, alanine substitutions at conserved residues abolished GP processing and membrane fusion in plasmid-transfected cells. Six invariant H and C residues and W503 are essential for viral replication, as evidenced by the fact that their mutant viruses could not be rescued. Both P480A and R482A mutant viruses were rescued, grew similarly to wild-type (WT) virus, and produced evidently processed GP1 and GP2 subunits in virus-infected cells, despite the fact that the same mutations abolished GP processing and membrane fusion in a plasmid-based protein expression system, illustrating the importance of using an infectious-virus system for analyzing viral glycoprotein function. In summary, our results demonstrate an essential biological role of the GP2 CT in arenavirus replication and suggest it as a potential novel target for developing antivirals and/or attenuated viral vaccine candidates.IMPORTANCE Several arenaviruses, such as Lassa virus (LASV), can cause severe and lethal hemorrhagic fever diseases with high mortality and morbidity, for which no FDA-approved vaccines or therapeutics are available. Viral entry is mediated by the arenavirus GP complex, which consists of the stable signal peptide (SSP), the receptor-binding subunit GP1, and the transmembrane subunit GP2. The cytoplasmic tail (CT) of GP2 is highly conserved among arenaviruses, but its functional role in viral replication is not completely understood. Using a reverse genetics system of a prototypic arenavirus, Pichinde virus (PICV), we show that the GP2 CT contains certain conserved residues that are essential for virus replication, implicating it as a potentially good target for developing antivirals and live-attenuated viral vaccines against deadly arenavirus pathogens.


Assuntos
Glicoproteínas/metabolismo , Vírus Pichinde/genética , Proteínas do Envelope Viral/genética , Células A549 , Substituição de Aminoácidos/genética , Animais , Arenaviridae , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/metabolismo , Arenavirus/genética , Arenavirus/metabolismo , Linhagem Celular , Chlorocebus aethiops , Glicoproteínas/genética , Células HEK293 , Humanos , Fusão de Membrana/genética , Mutação/genética , Vírus Pichinde/metabolismo , Sinais Direcionadores de Proteínas/genética , Células Vero , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Replicação Viral
10.
Front Immunol ; 10: 1586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379819

RESUMO

RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1) (IFNα and IFNß) and other pro-inflammatory cytokines during the early stage of viral infection. While RIG-I and MDA5 share many genetic, structural and functional similarities, there is increasing evidence that they can have significantly different strategies to recognize different pathogens, PAMPs, and in different host species. This review article discusses the similarities and differences between RIG-I and MDA5 from multiple perspectives, including their structures, evolution and functional relationships with other cellular proteins, their differential mechanisms of distinguishing between host and viral dsRNAs and interactions with host and viral protein factors, and their immunogenic signaling. A comprehensive comparative analysis can help inform future studies of RIG-I and MDA5 in order to fully understand their functions in order to optimize potential therapeutic approaches targeting them.


Assuntos
Proteína DEAD-box 58/genética , Helicase IFIH1 Induzida por Interferon/genética , Animais , Humanos , Vírus de RNA/genética , RNA Viral/genética , Proteínas Virais/genética
11.
Front Immunol ; 10: 372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918506

RESUMO

Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.


Assuntos
Infecções por Arenaviridae , Arenavirus/imunologia , Surtos de Doenças , Febres Hemorrágicas Virais , Tolerância Imunológica , Ribavirina/uso terapêutico , África/epidemiologia , Infecções por Arenaviridae/tratamento farmacológico , Infecções por Arenaviridae/epidemiologia , Infecções por Arenaviridae/imunologia , Febres Hemorrágicas Virais/tratamento farmacológico , Febres Hemorrágicas Virais/epidemiologia , Febres Hemorrágicas Virais/imunologia , Humanos , América do Sul/epidemiologia
12.
Arch Virol ; 164(2): 607-612, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30474753

RESUMO

Four new H9N2 avian influenza viruses (AIVs) were isolated from domestic birds in Guangdong between December 2015 and April 2016. Nucleotide sequence comparisons indicated that most of the internal genes of these four strains were highly similar to those of human H7N9 viruses. Amino acid substitutions and deletions found in the HA and NA proteins indicated that all four of these new isolates may have an enhanced ability to infect humans and other mammals. A cross-hemagglutinin-inhibition assay, conducted with two vaccine strains that are broadly used in China, suggested that antisera against vaccine candidates could not provide complete inhibition of the new isolates.


Assuntos
Antígenos Virais/genética , Evolução Molecular , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , China , Patos , Gansos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Humana/virologia , Fases de Leitura Aberta , Filogenia
13.
Oncotarget ; 8(37): 60725-60726, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28977821
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...