Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(5): 1039-1062, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527857

RESUMO

The PilZ domain-containing protein, PlzA, is the only known cyclic di-GMP binding protein encoded by all Lyme disease spirochetes. PlzA has been implicated in the regulation of many borrelial processes, but the effector mechanism of PlzA was not previously known. Here, we report that PlzA can bind DNA and RNA and that nucleic acid binding requires c-di-GMP, with the affinity of PlzA for nucleic acids increasing as concentrations of c-di-GMP were increased. A mutant PlzA that is incapable of binding c-di-GMP did not bind to any tested nucleic acids. We also determined that PlzA interacts predominantly with the major groove of DNA and that sequence length and G-C content play a role in DNA binding affinity. PlzA is a dual-domain protein with a PilZ-like N-terminal domain linked to a canonical C-terminal PilZ domain. Dissection of the domains demonstrated that the separated N-terminal domain bound nucleic acids independently of c-di-GMP. The C-terminal domain, which includes the c-di-GMP binding motifs, did not bind nucleic acids under any tested conditions. Our data are supported by computational docking, which predicts that c-di-GMP binding at the C-terminal domain stabilizes the overall protein structure and facilitates PlzA-DNA interactions via residues in the N-terminal domain. Based on our data, we propose that levels of c-di-GMP during the various stages of the enzootic life cycle direct PlzA binding to regulatory targets.


Assuntos
Proteínas de Bactérias , Borrelia burgdorferi , GMP Cíclico , Proteínas de Ligação a RNA , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ligação Proteica , Domínios Proteicos , DNA Bacteriano/metabolismo , DNA Bacteriano/genética
2.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36778503

RESUMO

The PilZ domain-containing protein, PlzA, is the only known cyclic di-GMP binding protein encoded by all Lyme disease spirochetes. PlzA has been implicated in the regulation of many borrelial processes, but the effector mechanism of PlzA was not previously known. Here we report that PlzA can bind DNA and RNA and that nucleic acid binding requires c-di-GMP, with the affinity of PlzA for nucleic acids increasing as concentrations of c-di-GMP were increased. A mutant PlzA that is incapable of binding c-di-GMP did not bind to any tested nucleic acids. We also determined that PlzA interacts predominantly with the major groove of DNA and that sequence length plays a role in DNA binding affinity. PlzA is a dual-domain protein with a PilZ-like N-terminal domain linked to a canonical C-terminal PilZ domain. Dissection of the domains demonstrated that the separated N-terminal domain bound nucleic acids independently of c-di-GMP. The C-terminal domain, which includes the c-di-GMP binding motifs, did not bind nucleic acids under any tested conditions. Our data are supported by computational docking, which predicts that c-di-GMP binding at the C-terminal domain stabilizes the overall protein structure and facilitates PlzA-DNA interactions via residues in the N-terminal domain. Based on our data, we propose that levels of c-di-GMP during the various stages of the enzootic life cycle direct PlzA binding to regulatory targets.

3.
Front Aging Neurosci ; 15: 1223273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711995

RESUMO

The age-dependent loss of neuronal plasticity is a well-known phenomenon that is poorly understood. The loss of this capacity for axonal regeneration is emphasized following traumatic brain injury, which is a major cause of disability and death among adults in the US. We have previously shown the intrinsic capacity of magnocellular neurons within the supraoptic nucleus to undergo axonal regeneration following unilateral axotomization in an age-dependent manner. The aim of this research was to determine the age-dependent molecular mechanisms that may underlie this phenomenon. As such, we characterized the transcriptome and DNA methylome of the supraoptic nucleus in uninjured 35-day old rats and 125-day old rats. Our data indicates the downregulation of a large number of axonogenesis related transcripts in 125-day old rats compared to 35-day old rats. Specifically, several semaphorin and ephrin genes were downregulated, as well as growth factors including FGF's, insulin-like growth factors (IGFs), and brain-derived neurotrophic factor (BDNF). Differential methylation analysis indicates enrichment of biological processes involved in axonogenesis and axon guidance. Conversely, we observed a robust and specific upregulation of MHCI related transcripts. This may involve the activator protein 1 (AP-1) transcription factor complex as motif analysis of differentially methylated regions indicate enrichment of AP-1 binding sites in hypomethylated regions. Together, our data suggests a loss of pro-regenerative capabilities with age which would prevent axonal growth and appropriate innervation following injury.

5.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36860938

RESUMO

The Borrelia burgdorferi SpoVG protein has previously been found to be a DNA- and RNA-binding protein. To aid in the elucidation of ligand motifs, affinities for numerous RNAs, ssDNAs, and dsDNAs were measured and compared. The loci used in the study were spoVG, glpFKD, erpAB, bb0242, flaB, and ospAB, with particular focus on the untranslated 5' portion of the mRNAs. Performing binding and competition assays yielded that the 5' end of spoVG mRNA had the highest affinity while the lowest observed affinity was to the 5' end of flaB mRNA. Mutagenesis studies of spoVG RNA and ssDNA sequences suggested that the formation of SpoVG-nucleic acid complexes are not entirely dependent on either sequence or structure. Additionally, exchanging uracil for thymine in ssDNAs did not affect protein-nucleic acid complex formation.

6.
Biochem Biophys Res Commun ; 654: 40-46, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36889033

RESUMO

The Borrelia burgdorferi SpoVG protein has previously been found to be a DNA- and RNA-binding protein. To aid in the elucidation of ligand motifs, affinities for numerous RNAs, ssDNAs, and dsDNAs were measured and compared. The loci used in the study were spoVG, glpFKD, erpAB, bb0242, flaB, and ospAB, with particular focus on the untranslated 5' portion of the mRNAs. Performing binding and competition assays yielded that the 5' end of spoVG mRNA had the highest affinity while the lowest observed affinity was to the 5' end of flaB mRNA. Mutagenesis studies of spoVG RNA and ssDNA sequences suggested that the formation of SpoVG-nucleic acid complexes are not entirely dependent on either sequence or structure. Additionally, exchanging uracil for thymine in ssDNAs did not affect protein-nucleic acid complex formation.


Assuntos
Borrelia burgdorferi , RNA , RNA/genética , RNA/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/genética , DNA/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , RNA Mensageiro/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética
7.
Pathogens ; 12(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36839539

RESUMO

Borrelia miyamotoi is an emerging tick-borne pathogen in the Northern Hemisphere and is the causative agent of Borrelia miyamotoi disease (BMD). Borrelia miyamotoi is vectored by the same hard-bodied ticks as Lyme disease Borrelia, yet phylogenetically groups with relapsing fever Borrelia, and thus, has been uniquely labeled a hard tick-borne relapsing fever Borrelia. Burgeoning research has uncovered new aspects of B. miyamotoi in human patients, nature, and the lab. Of particular interest are novel findings on disease pathology, prevalence, diagnostic methods, ecological maintenance, transmission, and genetic characteristics. Herein, we review recent literature on B. miyamotoi, discuss how findings adapt to current Borrelia doctrines, and briefly consider what remains unknown about B. miyamotoi.

8.
Infect Immun ; 91(3): e0006123, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36853005

RESUMO

Borrelia mayonii is a newly recognized causative agent of Lyme disease in the Upper Midwestern United States, with distinct clinical presentations compared to classical Lyme disease caused by other Lyme Borrelia species. However, little is known about the B. mayonii genetic determinants required for establishing infection or perpetuating disease in mammals. Extrachromosomal plasmids in Borrelia species often encode proteins necessary for infection and pathogenesis, and spontaneous loss of these plasmids can lead to the identification of virulence determinant genes. Here, we describe infection of Lyme disease-susceptible C3H mice with B. mayonii, and show bacterial dissemination and persistence in peripheral tissues. Loss of endogenous plasmids, including lp28-4, lp25, and lp36 correlated with reduced infectivity in mice. The apparent requirement for lp28-4 during murine infection suggests the presence of a novel virulence determinant, as this plasmid does not encode homologs of any known virulence determinant. We also describe transformation and stable maintenance of a self-replicating shuttle vector in B. mayonii, and show that loss of either lp25 or lp28-4 correlated with increased transformation competency. Finally, we demonstrate that linear plasmids lp25 and lp28-4 each encode functional restriction modification systems with distinct but partially overlapping target modification sequences, which likely accounts for the observed decrease in transformation efficiency when those plasmids are present. Taken together, this study describes a role for endogenous plasmids in mammalian infection and restriction protection in the Lyme disease spirochete Borrelia mayonii.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Animais , Camundongos , Borrelia burgdorferi/genética , Camundongos Endogâmicos C3H , Plasmídeos/genética , Doença de Lyme/microbiologia , Mamíferos
9.
Infect Immun ; 91(3): e0025022, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36853019

RESUMO

Almost all spirochetes in the genus Borrelia (sensu lato) naturally contain multiple variants of closely related prophages. In the Lyme disease borreliae, these prophages are maintained as circular episomes that are called circular plasmid 32 kb (cp32s). The cp32s of Lyme agents are particularly unique in that they encode two distinct families of lipoproteins, namely, Erp and Rev, that are expressed on the bacterial outer surface during infection of vertebrate hosts. All identified functions of those outer surface proteins involve interactions between the spirochetes and host molecules, as follows: Erp proteins bind plasmin(ogen), laminin, glycosaminoglycans, and/or components of complement and Rev proteins bind fibronectin. Thus, cp32 prophages provide their bacterial hosts with surface proteins that can enhance infection processes, thereby facilitating their own survival. Horizontal transfer via bacteriophage particles increases the spread of beneficial alleles and creates diversity among Erp and Rev proteins.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Prófagos/genética , Prófagos/metabolismo , Sequência de Bases , Proteínas da Membrana Bacteriana Externa/genética , Doença de Lyme/microbiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Vertebrados/metabolismo , Proteínas de Bactérias/genética
10.
Fluids Barriers CNS ; 19(1): 75, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088417

RESUMO

The choroid plexus is situated at an anatomically and functionally important interface within the ventricles of the brain, forming the blood-cerebrospinal fluid barrier that separates the periphery from the central nervous system. In contrast to the blood-brain barrier, the choroid plexus and its epithelial barrier have received considerably less attention. As the main producer of cerebrospinal fluid, the secretory functions of the epithelial cells aid in the maintenance of CNS homeostasis and are capable of relaying inflammatory signals to the brain. The choroid plexus acts as an immunological niche where several types of peripheral immune cells can be found within the stroma including dendritic cells, macrophages, and T cells. Including the epithelia cells, these cells perform immunosurveillance, detecting pathogens and changes in the cytokine milieu. As such, their activation leads to the release of homing molecules to induce chemotaxis of circulating immune cells, driving an immune response at the choroid plexus. Research into the barrier properties have shown how inflammation can alter the structural junctions and promote increased bidirectional transmigration of cells and pathogens. The goal of this review is to highlight our foundational knowledge of the choroid plexus and discuss how recent research has shifted our understanding towards viewing the choroid plexus as a highly dynamic and important contributor to the pathogenesis of neurological infections. With the emergence of several high-profile diseases, including ZIKA and SARS-CoV-2, this review provides a pertinent update on the cellular response of the choroid plexus to these diseases. Historically, pharmacological interventions of CNS disorders have proven difficult to develop, however, a greater focus on the role of the choroid plexus in driving these disorders would provide for novel targets and routes for therapeutics.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Barreira Hematoencefálica/fisiologia , Encéfalo , Plexo Corióideo/fisiologia , Humanos , SARS-CoV-2
11.
PLoS One ; 17(9): e0274125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36178885

RESUMO

Some species of bacteria respond to antibiotic stresses by altering their transcription profiles, in order to produce proteins that provide protection against the antibiotic. Understanding these compensatory mechanisms allows for informed treatment strategies, and could lead to the development of improved therapeutics. To this end, studies were performed to determine whether Borrelia burgdorferi, the spirochetal agent of Lyme disease, also exhibits genetically-encoded responses to the commonly prescribed antibiotics doxycycline and amoxicillin. After culturing for 24 h in a sublethal concentration of doxycycline, there were significant increases in a substantial number of transcripts for proteins that are involved with translation. In contrast, incubation with a sublethal concentration of amoxicillin did not lead to significant changes in levels of any bacterial transcript. We conclude that B. burgdorferi has a mechanism(s) that detects translational inhibition by doxycycline, and increases production of mRNAs for proteins involved with translation machinery in an attempt to compensate for that stress.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Borrelia burgdorferi/genética , Doxiciclina/farmacologia , Humanos , Doença de Lyme/tratamento farmacológico , Doença de Lyme/microbiologia
12.
Pathogens ; 10(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801255

RESUMO

Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune responses. B. burgdorferi utilizes several immune evasion tactics ranging from the regulation of surface proteins, tick saliva, antimicrobial peptide resistance, and the disabling of the germinal center. This review aims to cover the various methods by which B. burgdorferi evades detection and destruction by the host immune response, examining both the innate and adaptive responses. By understanding the methods employed by B. burgdorferi to evade the host immune response, we gain a deeper knowledge of B. burgdorferi pathogenesis and Lyme disease, and gain insight into how to create novel, effective treatments.

13.
PLoS Pathog ; 17(2): e1009256, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524035

RESUMO

Lyme disease, which is caused by infection with Borrelia burgdorferi and related species, can lead to inflammatory pathologies affecting the joints, heart, and nervous systems including the central nervous system (CNS). Inbred laboratory mice have been used to define the kinetics of B. burgdorferi infection and host immune responses in joints and heart, however similar studies are lacking in the CNS of these animals. A tractable animal model for investigating host-Borrelia interactions in the CNS is key to understanding the mechanisms of CNS pathogenesis. Therefore, we characterized the kinetics of B. burgdorferi colonization and associated immune responses in the CNS of mice during early and subacute infection. Using fluorescence-immunohistochemistry, intravital microscopy, bacterial culture, and quantitative PCR, we found B. burgdorferi routinely colonized the dura mater of C3H mice, with peak spirochete burden at day 7 post-infection. Dura mater colonization was observed for several Lyme disease agents including B. burgdorferi, B. garinii, and B. mayonii. RNA-sequencing and quantitative RT-PCR showed that B. burgdorferi infection was associated with increased expression of inflammatory cytokines and a robust interferon (IFN) response in the dura mater. Histopathologic changes including leukocytic infiltrates and vascular changes were also observed in the meninges of infected animals. In contrast to the meninges, we did not detect B. burgdorferi, infiltrating leukocytes, or large-scale changes in cytokine profiles in the cerebral cortex or hippocampus during infection; however, both brain regions demonstrated similar changes in expression of IFN-stimulated genes as observed in peripheral tissues and meninges. Taken together, B. burgdorferi is capable of colonizing the meninges in laboratory mice, and induces localized inflammation similar to peripheral tissues. A sterile IFN response in the absence of B. burgdorferi or inflammatory cytokines is unique to the brain parenchyma, and provides insight into the potential mechanisms of CNS pathology associated with this important pathogen.


Assuntos
Borrelia burgdorferi/patogenicidade , Dura-Máter/patologia , Encefalomielite/microbiologia , Doença de Lyme/patologia , Animais , Linfócitos B/imunologia , Adesão Celular/genética , Modelos Animais de Doenças , Dura-Máter/imunologia , Encefalomielite/genética , Encefalomielite/imunologia , Encefalomielite/patologia , Matriz Extracelular/genética , Matriz Extracelular/imunologia , Feminino , Perfilação da Expressão Gênica , Mediadores da Inflamação/imunologia , Leucócitos/imunologia , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Camundongos , Linfócitos T/imunologia , Cicatrização/genética
14.
Ticks Tick Borne Dis ; 12(2): 101638, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360384

RESUMO

The host immune response to infection is a well-coordinated system of innate and adaptive immune cells working in concert to prevent the colonization and dissemination of a pathogen. While this typically leads to a beneficial outcome and the suppression of disease pathogenesis, the Lyme borreliosis bacterium, Borrelia burgdorferi sensu lato, can elicit an immune profile that leads to a deleterious state. As B. burgdorferi s.l. produces no known toxins, it is suggested that the immune and inflammatory response of the host are responsible for the manifestation of symptoms, including flu-like symptoms, musculoskeletal pain, and cognitive disorders. The past several years has seen a substantial increase in the use of microarray and sequencing technologies to investigate the transcriptome response induced by B. burgdorferi s.l., thus enabling researchers to identify key factors and pathways underlying the pathophysiology of Lyme borreliosis. In this review we present the major host transcriptional outcomes induced by the bacterium across several studies and discuss the overarching theme of the host inflammatory and immune response, and how it influences the pathology of Lyme borreliosis.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade , Inflamação/imunologia , Transcriptoma/imunologia , Animais , Humanos , Macaca mulatta , Camundongos
15.
PLoS One ; 15(7): e0234993, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645014

RESUMO

The main functions of the choroid plexus (CP) are the production of cerebral spinal fluid (CSF), the formation of the blood-CSF barrier, and regulation of immune response. This barrier allows for the exchange of specific nutrients, waste, and peripheral immune cells between the blood stream and CSF. Borrelia burgdorferi (Bb), the causative bacteria of Lyme disease, is associated with neurological complications including meningitis-indeed, Bb has been isolated from the CSF of patients. While it is accepted that B. burgdorferi can enter the central nervous system (CNS) of patients, it is unknown how the bacteria crosses this barrier and how the pathogenesis of the disease leads to the observed symptoms in patients. We hypothesize that during infection Borrelia burgdorferi will induce an immune response conducive to the chemotaxis of immune cells and subsequently lead to a pro-inflammatory state with the CNS parenchyma. Primary human choroid plexus epithelial cells were grown in culture and infected with B. burgdorferi strain B31 MI-16 for 48 hours. RNA was isolated and used for RNA sequencing and RT-qPCR validation. Secreted proteins in the supernatant were analyzed via ELISA. Transcriptome analysis based on RNA sequencing determined a total of 160 upregulated genes and 98 downregulated genes. Pathway and biological process analysis determined a significant upregulation in immune and inflammatory genes specifically in chemokine and interferon related pathways. Further analysis revealed downregulation in genes related to cell to cell junctions including tight and adherens junctions. These results were validated via RT-qPCR. Protein analysis of secreted factors showed an increase in inflammatory chemokines, corresponding to our transcriptome analysis. These data further demonstrate the role of the CP in the modulation of the immune response in a disease state and give insight into the mechanisms by which Borrelia burgdorferi may disseminate into, and act upon, the CNS. Future experiments aim to detail the impact of B. burgdorferi on the blood-CSF-barrier (BCSFB) integrity and inflammatory response within animal models.


Assuntos
Borrelia burgdorferi/patogenicidade , Plexo Corióideo/patologia , Células Epiteliais/patologia , Doença de Lyme/microbiologia , Barreira Hematoencefálica , Borrelia burgdorferi/imunologia , Células Cultivadas , Plexo Corióideo/imunologia , Plexo Corióideo/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Inflamação/metabolismo , Doença de Lyme/imunologia , Doença de Lyme/patologia , Proteínas/análise , RNA/análise
16.
Mol Microbiol ; 112(3): 973-991, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31240776

RESUMO

When the Lyme disease spirochete, Borrelia burgdorferi, transfers from a feeding tick into a human or other vertebrate host, the bacterium produces vertebrate-specific proteins and represses factors needed for arthropod colonization. Previous studies determined that the B. burgdorferi BpuR protein binds to its own mRNA and autoregulates its translation, and also serves as co-repressor of erp transcription. Here, we demonstrate that B. burgdorferi controls transcription of bpuR, expressing high levels of bpuR during tick colonization but significantly less during mammalian infection. The master regulator of chromosomal replication, DnaA, was found to bind specifically to a DNA sequence that overlaps the bpuR promoter. Cultured B. burgdorferi that were genetically manipulated to produce elevated levels of BpuR exhibited altered levels of several proteins, although BpuR did not impact mRNA levels. Among these was the SodA superoxide dismutase, which is essential for mammalian infection. BpuR bound to sodA mRNA in live B. burgdorferi, and a specific BpuR-binding site was mapped 5' of the sodA open reading frame. Recognition of posttranscriptional regulation of protein levels by BpuR adds another layer to our understanding of the B. burgdorferi regulome, and provides further evidence that bacterial protein levels do not always correlate directly with mRNA levels.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/microbiologia , Proteínas de Ligação a RNA/metabolismo , Superóxido Dismutase/metabolismo , Carrapatos/microbiologia , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C3H , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Superóxido Dismutase/genética
18.
J Bacteriol ; 200(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30249703

RESUMO

Prokaryote restriction modification (RM) systems serve to protect bacteria from potentially detrimental foreign DNA. Recent evidence suggests that DNA methylation by the methyltransferase (MTase) components of RM systems can also have effects on transcriptome profiles. The type strain of the causative agent of Lyme disease, Borrelia burgdorferi B31, possesses two RM systems with N6-methyladenosine (m6A) MTase activity, which are encoded by the bbe02 gene located on linear plasmid lp25 and bbq67 on lp56. The specific recognition and/or methylation sequences had not been identified for either of these B. burgdorferi MTases, and it was not previously known whether these RM systems influence transcript levels. In the current study, single-molecule real-time sequencing was utilized to map genome-wide m6A sites and to identify consensus modified motifs in wild-type B. burgdorferi as well as MTase mutants lacking either the bbe02 gene alone or both bbe02 and bbq67 genes. Four novel conserved m6A motifs were identified and were fully attributable to the presence of specific MTases. Whole-genome transcriptome changes were observed in conjunction with the loss of MTase enzymes, indicating that DNA methylation by the RM systems has effects on gene expression. Genes with altered transcription in MTase mutants include those involved in vertebrate host colonization (e.g., rpoS regulon) and acquisition by/transmission from the tick vector (e.g., rrp1 and pdeB). The results of this study provide a comprehensive view of the DNA methylation pattern in B. burgdorferi, and the accompanying gene expression profiles add to the emerging body of research on RM systems and gene regulation in bacteria.IMPORTANCE Lyme disease is the most prevalent vector-borne disease in North America and is classified by the Centers for Disease Control and Prevention (CDC) as an emerging infectious disease with an expanding geographical area of occurrence. Previous studies have shown that the causative bacterium, Borrelia burgdorferi, methylates its genome using restriction modification systems that enable the distinction from foreign DNA. Although much research has focused on the regulation of gene expression in B. burgdorferi, the effect of DNA methylation on gene regulation has not been evaluated. The current study characterizes the patterns of DNA methylation by restriction modification systems in B. burgdorferi and evaluates the resulting effects on gene regulation in this important pathogen.


Assuntos
Borrelia burgdorferi/genética , Metilação de DNA , Enzimas de Restrição-Modificação do DNA/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica , Análise de Sequência de RNA , Sequenciamento Completo do Genoma
19.
PLoS One ; 13(8): e0203286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30161198

RESUMO

Borrelia burgdorferi, the causative agent of Lyme disease, survives in nature through a cycle that alternates between ticks and vertebrates. To facilitate this defined lifestyle, B. burgdorferi has evolved a gene regulatory network that ensures transmission between those hosts, along with specific adaptations to niches within each host. Several regulatory proteins are known to be essential for the bacterium to complete these critical tasks, but interactions between regulators had not previously been investigated in detail, due to experimental uses of different strain backgrounds and growth conditions. To address that deficit in knowledge, the transcriptomic impacts of four critical regulatory proteins were examined in a uniform strain background. Pairs of mutants and their wild-type parent were grown simultaneously under a single, specific culture condition, permitting direct comparisons between the mutant strains. Transcriptomic analyses were strand-specific, and assayed both coding and noncoding RNAs. Intersection analyses identified regulatory overlaps between regulons, including transcripts involved in carbohydrate and polyamine metabolism. In addition, it was found that transcriptional units such as ospC and dbpBA, which were previously observed to be affected by alternative sigma factors, are transcribed by RNA polymerase using the housekeeping sigma factor, RpoD.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Transcriptoma , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Mutação , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
20.
Front Microbiol ; 9: 811, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922241

RESUMO

The Lyme disease causing bacterium Borrelia burgdorferi has an affinity for the central nervous system (CNS) and has been isolated from human cerebral spinal fluid by 18 days following Ixodes scapularis tick bite. Signaling from resident immune cells of the CNS could enhance CNS penetration by B. burgdorferi and activated immune cells through the blood brain barrier resulting in multiple neurological complications, collectively termed neuroborreliosis. The ensuing symptoms of neurological impairment likely arise from a glial-driven, host inflammatory response to B. burgdorferi. To date, however, the mechanism by which the bacterium initiates neuroinflammation leading to neural dysfunction remains unclear. We hypothesized that dead B. burgdorferi and bacterial debris persist in the CNS in spite of antibiotic treatment and contribute to the continuing inflammatory response in the CNS. To test our hypothesis, cultures of primary human microglia were incubated with live, antibiotic-killed and antibiotic-killed sonicated B. burgdorferi to define the response of microglia to different forms of the bacterium. We demonstrate that primary human microglia treated with B. burgdorferi show increased expression of pattern recognition receptors and genes known to be involved with cytoskeletal rearrangement and phagocytosis including MARCO, SCARB1, PLA2, PLD2, CD14, and TLR3. In addition, we observed increased expression and secretion of pro-inflammatory mediators and neurotrophic factors such as IL-6, IL-8, CXCL-1, and CXCL-10. Our data also indicate that B. burgdorferi interacts with the cell surface of primary human microglia and may be internalized following this initial interaction. Furthermore, our results indicate that dead and sonicated forms of B. burgdorferi induce a significantly larger inflammatory response than live bacteria. Our results support our hypothesis and provide evidence that microglia contribute to the damaging inflammatory events associated with neuroborreliosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...