Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(5): 2003-2011, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352855

RESUMO

Inversion analysis of transient absorption data to capture the photoexcited charge carrier population rate dynamics is a powerful technique for extracting realistic lifetimes and identifying recombination pathways. However, for highly scattering samples such as Cu2O nanoparticles (NPs) with associated dielectric Mie scattering, the scattering leads to an inaccurate measure of the excited photocarrier. This work studies methods to correct for the scattering to generalize the use of inversion analysis and provide secondary information about the nature of the scattering NPs. Scattering profiles of semitransparent disks containing Cu2O NPs with different shapes and sizes are measured to demonstrate that the inclusion of scattering in analysis reduces the photoexcited carrier density by 1 order of magnitude. It is found that the photocarrier density response is affected by shape rather than size. A Fourier transform of the scattering profiles produces a distribution of length scales within the sample characteristic of the mean separation of scatterers. This analysis reveals that NPs are forming clusters. Links are made between the scattering and carrier dynamics.

2.
Nano Lett ; 21(20): 8872-8879, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34632782

RESUMO

The downscaling of nonlinear optical devices is significantly hindered by the inherently weak nonlinearity in regular materials. Here, we report a giant third-harmonic generation discovered in epitaxial thin films of V-VI chalcogenide topological insulators. Using a tailored substrate and capping layer, a single reflection from a 13 nm film can produce a nonlinear conversion efficiency of nearly 0.01%, a performance that rivals micron-scale waveguides made from conventional materials or metasurfaces with far more complex structures. Such strong nonlinear optical emission, absent from the topologically trivial member in the same compound family, is found to be generated by the same bulk band characteristics that are responsible for producing the band inversion and the nontrivial topological ordering. This finding reveals the possibility of obtaining superior optical nonlinearity by examining the large pool of newly discovered topological materials with similar band characteristics.

3.
Sci Rep ; 11(1): 10483, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006905

RESUMO

A type-II InAs/AlAs[Formula: see text]Sb[Formula: see text] multiple-quantum well sample is investigated for the photoexcited carrier dynamics as a function of excitation photon energy and lattice temperature. Time-resolved measurements are performed using a near-infrared pump pulse, with photon energies near to and above the band gap, probed with a terahertz probe pulse. The transient terahertz absorption is characterized by a multi-rise, multi-decay function that captures long-lived decay times and a metastable state for an excess-photon energy of [Formula: see text] meV. For sufficient excess-photon energy, excitation of the metastable state is followed by a transition to the long-lived states. Excitation dependence of the long-lived states map onto a nearly-direct band gap ([Formula: see text]) density of states with an Urbach tail below [Formula: see text]. As temperature increases, the long-lived decay times increase [Formula: see text], due to the increased phonon interaction of the unintentional defect states, and by phonon stabilization of the hot carriers [Formula: see text]. Additionally, Auger (and/or trap-assisted Auger) scattering above the onset of the plateau may also contribute to longer hot-carrier lifetimes. Meanwhile, the initial decay component shows strong dependence on excitation energy and temperature, reflecting the complicated initial transfer of energy between valence-band and defect states, indicating methods to further prolong hot carriers for technological applications.

4.
Opt Lett ; 45(20): 5852-5855, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057301

RESUMO

As optical two-dimensional coherent spectroscopy (2DCS) is extended to a broader range of applications, it is critical to improve the detection sensitivity of optical 2DCS. We developed a fast phase-cycling scheme in a non-collinear optical 2DCS implementation by using liquid crystal phase retarders to modulate the phases of two excitation pulses. The background in the signal can be eliminated by combining either two or four interferograms measured with a proper phase configuration. The effectiveness of this method was validated in optical 2DCS measurements of an atomic vapor. This fast phase-cycling scheme will enable optical 2DCS in novel emerging applications that require enhanced detection sensitivity.

5.
J Phys Chem Lett ; 10(18): 5381-5386, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31448921

RESUMO

Solar-driven production of renewable energy (e.g., H2) has been investigated for decades. To date, the applications are limited by low efficiency due to rapid charge recombination (both radiative and nonradiative modes) and slow reaction rates. Tremendous efforts have been focused on reducing the radiative recombination and enhancing the interfacial charge transfer by engineering the geometric and electronic structure of the photocatalysts. However, fine-tuning of nonradiative recombination processes and optimization of target reaction paths still lack effective control. Here we show that minimizing the nonradiative relaxation and the adsorption energy of photogenerated surface-adsorbed hydrogen atoms are essential to achieve a longer lifetime of the charge carriers and a faster reaction rate, respectively. Such control results in a 16-fold enhancement in photocatalytic H2 evolution and a 15-fold increase in photocurrent of the crystalline g-C3N4 compared to that of the amorphous g-C3N4.

6.
Opt Express ; 27(12): 16958-16965, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252913

RESUMO

Optical rectification of near-infrared laser pulses generates broadband terahertz radiation in chalcopyrite crystals CdGeP2, ZnGeP2 and CdSiP2. The emission is characterized using linear-polarized excitation from 0.8 eV to 1.55 eV (1550 nm - 800 nm). All three crystals are (110)-cut and polished to 0.5 mm, thinner than the coherence length across most of the excitation photon energy range, such that they all produce a bandwidth ~2.5 THz when excited with ~100 fs pulses. It is found that CdGeP2 produced the strongest emission at telecoms wavelengths, while CdSiP2 is generally the strongest source. Pump-intensity dependence provides the nonlinear coefficients for each crystal.

7.
ACS Nano ; 13(3): 3457-3465, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30807694

RESUMO

Aspects of the optoelectronic performance of thin-film ferromagnetic materials are evaluated for application in ultrafast devices. Dynamics of photocarriers and their associated spin polarization are measured using transient reflectivity (TR) measurements in cross linear and circular polarization configurations for La0.7Sr0.3MnO3 films with a range of thicknesses. Three spin-related recombination mechanisms have been observed for thicker films (thickness of d ≥ 20 nm) at different time regimes (τ), which are attributed to the electron-phonon recombination (τ < 1 ps), phonon-assisted spin-lattice recombination (τ ∼ 100 ps), and thermal diffusion and radiative recombination (τ > 1 ns). Density functional theory (DFT+U) based first-principles calculations provide information about the nature of the optical transitions and their probabilities for the majority and the minority spin channels. These transitions are partly responsible for the aforementioned recombination mechanisms, identified through the comparison of linear and circular TR measurements. The same sets of measurements for thinner films (4.4 nm ≤ d < 20 nm) revealed an additional relaxation dynamic (τ ∼ 10 ps), which is attributed to the enhanced surface recombination of charge carriers. Our DFT+U calculations further corroborate this observation, indicating an increase in the surface density of states with decreasing film thickness which results in higher amplitude and smaller time constant for surface recombination as the film thickness decreases.

8.
Sci Rep ; 8(1): 12473, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127507

RESUMO

Hot electrons established by the absorption of high-energy photons typically thermalize on a picosecond time scale in a semiconductor, dissipating energy via various phonon-mediated relaxation pathways. Here it is shown that a strong hot carrier distribution can be produced using a type-II quantum well structure. In such systems it is shown that the dominant hot carrier thermalization process is limited by the radiative recombination lifetime of electrons with reduced wavefunction overlap with holes. It is proposed that the subsequent reabsorption of acoustic and optical phonons is facilitated by a mismatch in phonon dispersions at the InAs-AlAsSb interface and serves to further stabilize hot electrons in this system. This lengthens the time scale for thermalization to nanoseconds and results in a hot electron distribution with a temperature of 490 K for a quantum well structure under steady-state illumination at room temperature.

9.
Opt Express ; 24(20): 23583-23595, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27828420

RESUMO

Optical injection and detection of charge currents is an alternative to conventional transport and photoemission measurements, avoiding the necessity of invasive contact that may disturb the system being examined. This is a particular concern for analyzing the surface states of topological insulators. In this work one- and two-color sources of photocurrents are isolated and examined in epitaxial thin films of Bi2Se3. We demonstrate that optical excitation and terahertz detection simultaneously captures one- and two-color photocurrent contributions, which has not been required for other material systems. A method is devised to extract the two components, and in doing so each can be related to surface or bulk excitations through symmetry. The separation of such photocurrents in topological insulators opens a new avenue for studying these materials by all-optical methods.

10.
Phys Chem Chem Phys ; 17(46): 31039-43, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26531849

RESUMO

Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized.

11.
Phys Chem Chem Phys ; 17(44): 30013-22, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26497739

RESUMO

Plasmonics can enhance solar energy conversion in semiconductors by light trapping, hot electron transfer, and plasmon-induced resonance energy transfer (PIRET). The multifaceted response of the plasmon and multiple interaction pathways with the semiconductor makes optimization challenging, hindering design of efficient plasmonic architectures. Therefore, in this paper we use a density matrix model to capture the interplay between scattering, hot electrons, and dipole-dipole coupling through the plasmon's dephasing, including both the coherent and incoherent dynamics necessary for interactions on the plasmon's timescale. The model is extended to Shockley-Queisser limit calculations for both photovoltaics and solar-to-chemical conversion, revealing the optimal application of each enhancement mechanism based on plasmon energy, semiconductor energy, and plasmon dephasing. The results guide application of plasmonic solar-energy harvesting, showing which enhancement mechanism is most appropriate for a given semiconductor's weakness, and what nanostructures can achieve the maximum enhancement.

12.
J Am Chem Soc ; 136(23): 8438-49, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24836347

RESUMO

This paper presents a sandwich-structured CdS-Au-TiO2 nanorod array as the photoanode in a photoelectrochemical cell (PEC) for hydrogen generation via splitting water. The gold nanoparticles sandwiched between the TiO2 nanorod and the CdS quantum dot (QD) layer play a dual role in enhancing the solar-to-chemical energy conversion efficiency. First, the Au nanoparticles serve as an electron relay, which facilitates the charge transfer between CdS and TiO2 when the CdS QDs are photoexcited by wavelengths shorter than 525 nm. Second, the Au nanoparticles act as a plasmonic photosensitizer, which enables the solar-to-hydrogen conversion at wavelengths longer than the band edge of CdS, extending the photoconversion wavelength from 525 to 725 nm. The dual role of Au leads to a photocurrent of 4.07 mA/cm(2) at 0 V (vs Ag|AgCl) under full solar spectrum irradiation and a maximum solar-to-chemical energy conversion efficiency of 2.8%. An inversion analysis is applied to the transient absorption spectroscopy data, tracking the transfer of electrons and holes in the heterostructure, relating the relaxation dynamics to the underlying coupled rate equation and revealing that trap-state Auger recombination is a dominant factor in interfacial charge transfer. It is found that addition of Au nanoparticles increases the charge-transfer lifetime, reduces the trap-state Auger rate, suppresses the long-time scale back transfer, and partially compensates the negative effects of the surface trap states. Finally, the plasmonic energy-transfer mechanism is identified as direct transfer of the plasmonic hot carriers, and the interfacial Schottky barrier height is shown to modulate the plasmonic hot electron transfer and back transfer. Transient absorption characterization of the charge transfer shows defect states cannot be ignored when designing QD-sensitized solar cells. This facile sandwich structure combines both the electrical and the optical functions of Au nanoparticles into a single structure, which has implications for the design of efficient solar-energy-harvesting devices.

13.
Nat Commun ; 4: 1390, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23340430

RESUMO

Predicting and controlling quantum mechanical phenomena require knowledge of the system Hamiltonian. A detailed understanding of the quantum pathways used to construct the Hamiltonian is essential for deterministic control and improved performance of coherent control schemes. In complex systems, parameters characterizing the pathways, especially those associated with inter-particle interactions and coupling to the environment, can only be identified experimentally. Quantitative insight can be obtained provided the quantum pathways are isolated and independently analysed. Here we demonstrate this possibility in an atomic vapour using optical three-dimensional Fourier-transform spectroscopy. By unfolding the system's nonlinear response onto three frequency dimensions, three-dimensional spectra unambiguously reveal transition energies, relaxation rates and dipole moments of each pathway. The results demonstrate the unique capacity of this technique as a powerful tool for resolving the complex nature of quantum systems. This experiment is a critical step in the pursuit of complete experimental characterization of a system's Hamiltonian.

14.
Phys Rev Lett ; 108(19): 193201, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003037

RESUMO

We report the observation of double-quantum coherence signals in a gas of potassium atoms at twice the frequency of the one-quantum coherences. Since a single atom does not have a state at the corresponding energy, this observation must be attributed to a collective resonance involving multiple atoms. These resonances are induced by weak interatomic dipole-dipole interactions, which means that the atoms cannot be treated in isolation, even at a low density of 10(12) cm(-3).

15.
J Am Chem Soc ; 134(36): 15033-41, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22891916

RESUMO

Plasmonic metal nanostructures have been incorporated into semiconductors to enhance the solar-light harvesting and the energy-conversion efficiency. So far the mechanism of energy transfer from the plasmonic metal to semiconductors remains unclear. Herein the underlying plasmonic energy-transfer mechanism is unambiguously determined in Au@SiO(2)@Cu(2)O sandwich nanostructures by transient-absorption and photocatalysis action spectrum measurement. The gold core converts the energy of incident photons into localized surface plasmon resonance oscillations and transfers the plasmonic energy to the Cu(2)O semiconductor shell via resonant energy transfer (RET). RET generates electron-hole pairs in the semiconductor by the dipole-dipole interaction between the plasmonic metal (donor) and semiconductor (acceptor), which greatly enhances the visible-light photocatalytic activity as compared to the semiconductor alone. RET from a plasmonic metal to a semiconductor is a viable and efficient mechanism that can be used to guide the design of photocatalysts, photovoltaics, and other optoelectronic devices.

16.
J Phys Chem B ; 115(18): 5365-71, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21384940

RESUMO

Optical two-dimensional Fourier-transform spectroscopy is used to study the heavy- and light-hole excitonic resonances in weakly disordered GaAs quantum wells. Homogeneous and inhomogeneous broadening contribute differently to the two-dimensional resonance line shapes, allowing separation of homogeneous and inhomogeneous line widths. The heavy-hole exciton exhibits more inhomogeneous than homogeneous broadening, whereas the light-hole exciton shows the reverse. This situation occurs because of the interplay between the length scale of the disorder and the exciton Bohr radius, which affects the exciton localization and scattering. Utilizing this separation of line widths, excitation-density-dependent measurements reveal that many-body interactions alter the homogeneous dephasing, while disorder-induced dephasing is unchanged.

17.
Opt Express ; 18(17): 17699-708, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20721156

RESUMO

We derive an analytical form for resonance lineshapes in two-dimensional (2D) Fourier transform spectroscopy. Our starting point is the solution of the optical Bloch equations for a two-level system in the 2D time domain. Application of the projection-slice theorem of 2D Fourier transforms reveals the form of diagonal and cross-diagonal slices in the 2D frequency data for arbitrary inhomogeneity. The results are applied in quantitative measurements of homogeneous and inhomogeneous broadening of multiple resonances in experimental data.


Assuntos
Análise de Fourier , Espectroscopia de Ressonância Magnética/métodos , Modelos Teóricos
18.
Phys Rev Lett ; 104(11): 117401, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366499

RESUMO

We present experimental coherent two-dimensional Fourier-transform spectra of Wannier exciton resonances in semiconductor quantum wells generated by a pulse sequence that isolates two-quantum coherences. By measuring the real part of the signals, we determine that the spectra are dominated by two-quantum coherences due to mean-field many-body interactions, rather than bound biexcitons. Simulations performed using dynamics controlled truncation agree with the experiments.

19.
Acc Chem Res ; 42(9): 1423-32, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19555068

RESUMO

Coherent light-matter interactions of direct-gap semiconductor nanostructures provide a great test system for fundamental research into quantum electronics and many-body physics. The understanding gained from studying these interactions can facilitate the design of optoelectronic devices. Recently, we have used optical two-dimensional Fourier-transform spectroscopy to explore coherent light-matter interactions in semiconductor quantum wells. Using three laser pulses to generate a four-wave-mixing signal, we acquire spectra by tracking the phase of the signal with respect to two time axes and then Fourier transforming them. In this Account, we show several two-dimensional projections and demonstrate techniques to isolate different contributions to the coherent response of semiconductors. The low-temperature spectrum of semiconductor quantum wells is dominated by excitons, which are electron-hole pairs bound through Coulombic interactions. Excitons are sensitive to their electronic and structural environment, which influences their optical resonance energies and line widths. In near perfect quantum wells, a small fluctuation of the quantum well thickness leads to spatial localization of the center-of-mass wave function of the excitons and inhomogeneous broadening of the optical resonance. The inhomogeneous broadening often masks the homogeneous line widths associated with the scattering of the excitons. In addition to forming excitons, Coulombic correlations also form excitonic molecules, called biexcitons. Therefore, the coherent response of the quantum wells encompasses the intra-action and interaction of both excitons and biexcitons in the presence of inhomogeneous broadening. Transient four-wave-mixing studies combined with microscopic theories have determined that many-body interactions dominate the strong coherent response from quantum wells. Although the numerous competing interactions cannot be easily separated in either the spectral or temporal domains, they can be separated using two-dimensional Fourier transform spectroscopy. The most common two-dimensional Fourier spectra are S(I)(omega(tau),T,omega(t)) in which the second time period is held fixed. The result is a spectrum that unfolds congested one-dimensional spectra, separates excitonic pathways, and shows which excitons are coherently coupled. This method also separates the biexciton contributions and isolates the homogeneous and inhomogeneous line widths. For semiconductor excitons, the line shape in the real part of the spectrum is sensitive to the many-body interactions, which we can suppress by exploiting polarization selection rules. In an alternative two-dimensional projection, S(I)(tau,omega(Tau),omega(t)), the nonradiative Raman coherent interactions are isolated. Finally, we show S(III)(tau,omega(Tau),omega(t)) spectra that isolate the two-quantum coherences associated with the biexciton. These spectra reveal previously unobserved many-body correlations.

20.
J Chem Phys ; 129(23): 234711, 2008 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19102556

RESUMO

We present the experimental and simulation results of two-dimensional optical coherent correlation spectroscopy signals along the phase-matching direction k(I) = -k(1) + k(2) + k(3) projected on the two-dimensional (2D) (Omega(3),Omega(2)) plane corresponding to the second and third delay periods. Overlapping Raman coherences in the conventional (Omega(3),Omega(1)) 2D projection may now be clearly resolved. The linewidths of the heavy-hole (HH) and light-hole (LH) excitonic Raman coherence peaks are obtained. Further insights on the higher-order (beyond time-dependent Hartree-Fock) correlation effects among mixed (HH and LH) two excitons can be gained by using a cocircular pulse polarization configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...