Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Pharm Sci ; 112(3): 844-858, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36372229

RESUMO

The recent emergence of drug-dendrimer conjugates within pharmaceutical industry research and development introduces a range of challenges for analytical and measurement science. These molecules are very high molecular weight (100-200kDa) with a significant degree of structural complexity. The characteristics and quality attributes that require understanding and definition, and impact efficacy and safety, are diverse. They relate to the intact conjugate, the various building blocks of these complex systems and the level of the free and bound active pharmaceutical ingredient (API). From an analytical and measurement science perspective, this necessitates the measurement of the molecular weight, impurity characterisation, the quantitation of the number of conjugated versus free API molecules, the determination of the impurity profiles of the building blocks, primary structure and both particle size and morphology. Here we report the first example of a global characterisation of a drug-dendrimer conjugate - PEGylated poly-lysine dendrimer currently under development (AZD0466). The impact of the wide variety of analytical and measurement techniques on the overall understanding of this complex molecular entity is discussed, with the relative capabilities of the various approaches compared. The results of this study are an essential platform for the research and development of the future generations of related dendrimer-based medicines.


Assuntos
Antineoplásicos , Dendrímeros , Dendrímeros/química , Lisina , Antineoplásicos/química , Polietilenoglicóis/química
2.
Eur J Pharm Sci ; 168: 106026, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597792

RESUMO

BACKGROUND: For nearly three years, the concerns regarding trace levels of N-nitrosamines in pharmaceuticals and the associated cancer risk have significantly expanded and are a major issue facing the global pharmaceutical industry. N-nitrosodimethylamine (NDMA) found in formulations of the popular anti-diabetic drug metformin is a prominent example. This has resulted in product recalls raising the profile within the media. Issues of method robustness, sample preparation and several unexpected sources of nitrosamine contamination have been highlighted as false positive risks. It has become apparent that the identification of the root causes of artefactual formation of nitrosamines must be identified to mitigate risk associated with the analysis. METHODS: A comparison study between four laboratories, across three companies was designed, employing orthogonal mass spectrometric methods for the quantification of NDMA in two metformin immediate release (IR) formulations and one extended release (XR) formulation. These were 2x LC-MS/MS, GC-MS/MS and GC-HRMS. RESULTS: Good agreement of results was obtained for the IR formulations. However, we measured higher concentrations of NDMA in the XR formulation using GC-MS/MS compared to LC-MS/MS. We could show that this was due to artefactual (in situ) formation of NDMA when samples were extracted with dichloromethane. Removal of dimethylamine (DMA) and nitrite from the extracted sample or the addition of a nitrosation scavenger are shown to be effective remedies. NDMA in situ formation was not observed in 10% MeOH or acetonitrile. CONCLUSION: Metformin pharmaceuticals contain traces of the API impurity DMA as well as inorganic nitrite from excipients. This can lead to artefactual formation of NDMA and hence false positive results if DCM is used for sample extraction. Similar artefacts are likely also in other pharmaceuticals if these contain the secondary amine precursor of the respective nitrosamine analyte.


Assuntos
Dimetilnitrosamina , Metformina , Cromatografia Líquida , Dimetilnitrosamina/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem
3.
J Mass Spectrom ; 55(10): e4649, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32996192
4.
Mass Spectrom Rev ; 37(4): 565-579, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28627748

RESUMO

The application of on-line mass spectrometry for direct analysis of chemical and other types of process continues to grow in importance and impact. The ability of the technique to characterize many aspects of a chemical reaction such as product and impurity formation, along with reactant consumption in a single experiment is key to its adoption and development. Innovations in ionization techniques and mass spectrometry instrumentation are enabling this adoption. An increasing range of ambient ionization techniques make on-line mass spectrometry applicable to a large range of chemistries. The academic development and commercialization of small footprint portable/transportable mass spectrometers is providing technology that can be positioned with any process under investigation. These developments, coupled with research into new ways of sampling representatively from both the condensed and gaseous phases, are positioning mass spectrometry as an essential technology for on-line process optimization, understanding and intelligent control. It is recognized that quantitative capability of mass spectrometry in this application can cause some resistance to its adoption, but research activities to tackle this limitation are on-going.

5.
Magn Reson Chem ; 55(4): 274-282, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27392109

RESUMO

Real time online monitoring of chemical processes can be carried out by a number of analytical techniques, including optical and vibrational spectroscopies, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). As each technique has unique advantages and challenges, combinations are an attractive option. The combination of a 500-MHz 1 H NMR and a small footprint mass spectrometer to monitor a batch reaction at process concentration was investigated. The mass spectrometer was coupled into the flow path of an online reaction monitoring NMR. Reaction mixture was pumped from a 100-ml vessel to an NMR flow tube before returning to the vessel. Small aliquots were diverted into a sampling make-up flow using an active flow splitter and passed to the mass spectrometer. Advantages of the combination were observed. 1 H NMR was ideal for quantitation of high level components, whereas MS showed a greater capability for detecting those at low level. In preliminary experiments MS produced a limited linear relationship with concentration (0.02% to 2% relative concentration, 0.01 mg/ml-1.25 mg/ml), because of signal saturation at the higher concentrations. NMR was unable to detect components below 0.1% relative to concentration maximum. Optimisation of sample transfer to the MS extended the linearity to 10% relative to the concentration maximum. Therefore, the combination of online NMR and MS allows both qualitative and quantitative analysis of reaction components over the full process range. The application of the combination was demonstrated by monitoring a batch chemical reaction and this is described. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia de Ressonância Magnética/instrumentação , Espectrometria de Massas/instrumentação , Omeprazol/análogos & derivados , Omeprazol/síntese química , Omeprazol/química
6.
Rapid Commun Mass Spectrom ; 30(7): 873-80, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969929

RESUMO

RATIONALE: Gas chromatography/mass spectrometry (GC/MS) is a fundamental tool used to identify impurities throughout the active pharmaceutical ingredients development process. The coupling of Orbitrap mass spectrometry with GC marks an exciting advance in capability for GC/MS, offering a significant step change in resolving power, mass accuracy, sensitivity and linear range. METHODS: A range of pharmaceutically relevant samples representing typical starting materials has been investigated with particular reference to impurity identification. The mass accuracy in Electron Ionisation (EI) and Chemical Ionisation (CI) was investigated for impurity identification. The linearity and mass accuracy over a wide dynamic range were evaluated. The number of scans obtained across chromatographic peaks was assessed at various resolution settings from 15,000 to 120,000 (full width at half maximum (FWHM) at m/z 200). RESULTS: All the accurate mass measurements for impurities were within <1 ppm of the theoretical m/z value. The scan speed at the highest resolution produced 11 scans across the peak, and the mass accuracy for all scans was consistently <1 ppm - sufficient for impurity investigations and quantitative analysis. Linearity was demonstrated for N,N,N'-trimethylethylenediamine over a concentration range of 0.0001 to 0.1250 µg/mL (w/v) with a correlation coefficient R(2) = 0.9996 and mass accuracy across all concentrations at <1.1 ppm. CONCLUSIONS: GC/Orbitrap MS has been evaluated for both qualitative and quantitative analysis of typical pharmaceutical precursors and impurities. Accurate mass measurement across a wide dynamic range, linearity and the ability to identify impurities in EI and CI illustrate that this instrument is a powerful tool of great benefit to pharmaceutical analysis.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Pesquisa Farmacêutica/métodos , Contaminação de Medicamentos , Modelos Lineares , Modelos Químicos , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Sensibilidade e Especificidade
7.
Rapid Commun Mass Spectrom ; 29(12): 1107-14, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-25981541

RESUMO

RATIONALE: A current challenge for analytical chemists is the development of the measurement systems and approaches required to understand dynamic processes such as tablet dissolution. The design and development of oral tablets could be improved by the availability of detailed information about the rates of release of the individual tablet components. Small footprint mass spectrometry (MS) systems are gaining use for on-line reaction monitoring because of their ability to rapidly determine multiple reactant, intermediate, and product species. We have therefore assessed the utility of such MS systems to the study of dissolution processes. METHODS: Aqueous dissolution media containing phosphate and other non-volatile buffer salts were pumped from a standard USPII dissolution vessel through an active splitter and back. The splitter sampled the dissolution stream and diluted it into a make-up flow which was pumped to a small single quadrupole mass spectrometer. Single ion monitoring was used to quantify the ions of interest. Three different bio-relevant dissolution media were studied to gauge the effect of the sample matrix. RESULTS: Individual dissolution profiles were obtained from a tablet containing three drugs, and lactose as the soluble filler. This was successfully demonstrated with three different bio-relevant media designed to reflect the pH of the different sections of the human gastro-intestinal tract. Component concentrations as low as 0.06 µg/mL (representing 1% dissolution) were detected. The MS dissolution profiles correlated with the visual observation of tablet dissolution. MS gave linear responses with concentration for the individual components, although analysis of the tablet solution indicated that ion suppression is an area for further investigation. CONCLUSIONS: An on-line MS system was used to determine the individual dissolution profiles of three drugs and lactose as they were released from the same tablet. The level of each of these components in solution was determined every 10 seconds, and each had a similar release profile. The dissolution profiles were determined using inorganic buffer solutions at three different bio-relevant pHs.


Assuntos
Espectrometria de Massas/métodos , Comprimidos/análise , Comprimidos/química , Acetaminofen/análise , Acetaminofen/química , Soluções Tampão , Química Farmacêutica/métodos , Guaifenesina/análise , Guaifenesina/química , Lactose/química , Sistemas On-Line , Fenilefrina/análise , Fenilefrina/química , Sais , Solubilidade
8.
J Am Soc Mass Spectrom ; 25(10): 1794-802, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25106707

RESUMO

For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.


Assuntos
Indústria Farmacêutica/instrumentação , Indústria Farmacêutica/métodos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Desenho de Fármacos , Desenho de Equipamento , Isocianatos/química , Modelos Moleculares , Reprodutibilidade dos Testes , Temperatura
9.
Rapid Commun Mass Spectrom ; 25(10): 1445-51, 2011 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-21504011

RESUMO

The design and development of a novel extractive electrospray ionisation (EESI) device for on-line reaction monitoring is described. The EESI apparatus uses a secondary, grounded nebuliser to produce an analyte aerosol and a Venturi pump is then used to transfer a sample of the aerosol to an electrospray source where it is ionised. The EESI apparatus was then tested with a variety of small, organic molecules to assess sensitivity, linearity and dynamic range. The performance of the technique will depend on the mass spectrometer used for the experiments; in the configurations used here it has a usable dynamic range of around 3.5 orders of magnitude with a linear range of around 2.5 orders of magnitude and is capable of analysing species present down to low µg/mL with signal-to-noise ratio greater than 2.5. The use of EESI for reaction monitoring was validated using a series of mock reaction mixtures and then used to monitor the base hydrolysis of ethyl salicylate to salicylic acid.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Aerossóis/análise , Compostos Orgânicos/análise , Preparações Farmacêuticas/análise , Salicilatos/análise , Ácido Salicílico/análise , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/instrumentação
10.
Rapid Commun Mass Spectrom ; 24(11): 1673-81, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20486265

RESUMO

Accurate mass measurement (used to determine elemental formulae) is an essential tool for impurity identification in pharmaceutical development for process understanding. Accurate mass liquid chromatography/mass spectrometry (LC/MS) is used widely for these types of analyses; however, there are still many occasions when gas chromatography (GC)/MS is the appropriate technique. Therefore, the provision of robust technology to provide accurate mass GC/MS (and GC/MS/MS) for this type of activity is essential. In this report we describe the optimisation and application of a newly available atmospheric pressure chemical ionisation (APCI) interface to couple GC to time-of-flight (TOF) MS.To fully test the potential of the new interface the APCI source conditions were optimised, using a number of standard compounds, with a variety of structures, as used in synthesis at AstraZeneca. These compounds were subsequently analysed by GC/APCI-TOF MS. This study was carried out to evaluate the range of compounds that are amenable to analysis using this technique. The range of compounds that can be detected and characterised using the technique was found to be extremely broad and include apolar hydrocarbons such as toluene. Both protonated molecules ([M + H](+)) and radical cations (M(+.)) were observed in the mass spectra produced by APCI, along with additional ion signals such as [M + H + O](+).The technique has been successfully applied to the identification of impurities in reaction mixtures from organic synthesis in process development. A typical mass accuracy of 1-2 mm/zunits (m/z 80-500) was achieved allowing the reaction impurities to be identified based on their elemental formulae. These results clearly demonstrate the potential of the technique as a tool for problem solving and process understanding in pharmaceutical development. The reaction mixtures were also analysed by GC/electron ionisation (EI)-MS and GC/chemical ionisation (CI)-MS to understand the capability of GC/APCI-MS relative to these two firmly established techniques.


Assuntos
Cromatografia Gasosa/métodos , Contaminação de Medicamentos/prevenção & controle , Espectrometria de Massas/métodos , Preparações Farmacêuticas/análise , Alprostadil/análise , Alprostadil/síntese química , Alprostadil/normas , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/normas , Controle de Qualidade
11.
Rapid Commun Mass Spectrom ; 23(18): 2878-84, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19670338

RESUMO

Capillary electrophoresis/mass spectrometry (CE/MS) is predominantly carried out using electrospray ionization (ESI). Recently, atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) have become available for CE/MS. With the VUV lamp turned off, the APPI source may also be used for CE/MS by thermospray ionization (TSI). In the present study the suitability of ESI, APCI, APPI and TSI for drug impurity profiling by CE/MS in the positive ion mode is evaluated. The drugs carbachol, lidocaine and proguanil and their potential impurities were used as test compounds, representing different molecular polarities. A background electrolyte of 100 mM acetic acid (pH 4.5) provided baseline separation of nearly all impurities from the respective drugs. APPI yielded both even- and odd-electron ions, whereas the other ionization techniques produced even-electron ions only. In-source fragmentation was more pronounced with APCI and APPI than with ESI and TSI, which was most obvious for proguanil and its impurities. In general, ESI and TSI appeared the most efficient ionization techniques for impurities that are charged in solution achieving detection limits of 100 ng/mL (full-scan mode). APPI and APCI showed a lower efficiency, but allowed ionization of low and high polarity analytes, although quaternary ammonium compounds (e.g. carbachol) could not be detected. Largely neutral compounds, such as the lidocaine impurity 2,6-dimethylaniline, could not be detected by TSI, and yielded similar detection limits (500 ng/mL) for ESI, APPI and APCI. In many cases, impurity detection at the 0.1% (w/w) level was possible when 1 mg/mL of parent drug was injected with at least one of the CE/MS systems. Overall, the tested CE/MS systems provide complementary information as illustrated by the detection and identification of an unknown impurity in carbachol.


Assuntos
Contaminação de Medicamentos , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Preparações Farmacêuticas/química , Carbacol/química , Eletroforese Capilar/instrumentação , Lidocaína/química , Proguanil/química , Controle de Qualidade
12.
Rapid Commun Mass Spectrom ; 22(12): 1779-86, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18470872

RESUMO

Product ion spectra produced by collision-induced dissociation (CID) in tandem mass spectrometry experiments can differ markedly between instruments. There have been a number of attempts to standardise the production of product ion spectra; however, a consensus on the most appropriate approach to the reproducible production of spectra has yet to be reached. We have previously reported the comparison of product ion spectra on a number of different types of instruments - a triple quadrupole, two ion traps and a Fourier transform ion cyclotron resonance mass spectrometer (Bristow AWT, Webb KS, Lubben AT, Halket JM. Rapid Commun. Mass Spectrom. 2004; 18: 1). The study showed that a high degree of reproducibility was achievable. The goal of this study was to improve the comparability and reproducibility of CID product ion mass spectra produced in different laboratories and using different instruments. This was carried out experimentally by defining a spectral calibration point on each mass spectrometer for product ion formation. The long-term goal is the development of a universal (instrument independent) product ion mass spectral library for the identification of unknowns. The spectra of 48 compounds have been recorded on eleven mass spectrometers: six ion traps, two triple quadrupoles, a hybrid triple quadrupole, and two quadrupole time-of-flight instruments. Initially, 4371 spectral comparisons were carried out using the data from eleven instruments and the degree of reproducibility was evaluated. A blind trial has also been carried out to assess the reproducibility of spectra obtained during LC/MS/MS. The results suggest a degree of reproducibility across all instrument types using the tuning point technique. The reproducibility of the product ion spectra is increased when comparing the tandem in time type instruments and the tandem in space instruments as two separate groups. This may allow the production of a more limited, yet useful, screening library for LC/MS/MS identification using instruments of the same type from different manufacturers.


Assuntos
Bases de Dados Factuais , Íons , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Calibragem , Cromatografia Líquida , Peso Molecular , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
13.
Rapid Commun Mass Spectrom ; 22(8): 1213-22, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18348222

RESUMO

Orthogonal-acceleration quadrupole time-of-flight (oa-QTOF) mass spectrometers, employed for accurate mass measurement, have been commercially available for well over a decade. A limitation of the early instruments of this type was the narrow ion abundance range over which accurate mass measurements could be made with a high degree of certainty. Recently, a new generation of oa-QTOF mass spectrometers has been developed and these allow accurate mass measurements to be recorded over a much greater range of ion abundances. This development has resulted from new ion detection technology and improved electronic stability or by accurate control of the number of ions reaching the detector. In this report we describe the results from experiments performed to evaluate the mass measurement performance of the Bruker micrOTOF-Q, a member of the new-generation oa-QTOFs. The relationship between mass accuracy and ion abundance has been extensively evaluated and mass measurement accuracy remained stable (+/-1.5 m m/z units) over approximately 3-4 orders of magnitude of ion abundance. The second feature of the Bruker micrOTOF-Q that was evaluated was the SigmaFit function of the software. This isotope pattern-matching algorithm provides an exact numerical comparison of the theoretical and measured isotope patterns as an additional identification tool to accurate mass measurement. The smaller the value, the closer the match between theoretical and measured isotope patterns. This information is then employed to reduce the number of potential elemental formulae produced from the mass measurements. A relationship between the SigmaFit value and ion abundance has been established. The results from the study for both mass accuracy and SigmaFit were employed to define the performance criteria for the micrOTOF-Q. This provided increased confidence in the selection of elemental formulae resulting from accurate mass measurements.


Assuntos
Drogas em Investigação/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida , Isótopos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
14.
Anal Chem ; 79(14): 5351-7, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17566983

RESUMO

In a previous study on capillary electrophoresis-atmospheric pressure photoionization mass spectrometry (CE-APPI-MS), it was observed that the formation of gas-phase ions does not always proceed through photon-induced mechanisms (Hommerson, P.; Khan, A. M.; De Jong, G. J.; Somsen, G. W. Electrophoresis 2007, 28, 1444-1453). That is, analyte signals were observed when the VUV excitation source was switched off. The aim of the present study was to further explore this photon-independent ionization (PII) process. Parameters such as MS capillary voltage, compound nature, background electrolyte (BGE) composition, and presence of dopants were studied using a CE-APPI-MS setup. Infusion experiments showed a relatively low MS capillary voltage of approximately 600 V to be the main prerequisite for PII. Quaternary ammonium compounds showed strong responses in PII-MS but could not be observed in dopant-assisted APPI. Basic amines could be ionized by both photoionization (PI) and PII, whereas neutral compounds (steroids) could only be observed using PI. Nonvolatile BGEs appeared to cause substantial ionization suppression in PII, while PI signals remained largely unaffected. Selection of the proper interface and MS settings allowed PI and PII to proceed simultaneously, which broadened the range of compounds that could be analyzed in a single CE-APPI-MS run. Based on the observed characteristics, it is concluded that PII most probably occurs by a liquid-phase ionization mechanism, which appears to arise in the APPI source when specific conditions are selected.


Assuntos
Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Fótons , Pressão Atmosférica , Gases , Íons/química , Fotoquímica , Temperatura , Raios Ultravioleta , Volatilização
15.
Eur J Mass Spectrom (Chichester) ; 12(4): 223-33, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17057279

RESUMO

Roots and extracts of the kava plant have been used in herbal medicine to treat sleep disturbances, stress and anxiety, although reported cases of liver toxicity led to many countries restricting its sale. The detection of the presence of kava in many medicinal products requires the use of methods capable of identifying the kavalactones with high certainty. Here, we describe the use of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) for the characterisation of six kavalactones (kavain, dihydrokavain, methysticin, dihydromethysticin, yangonin and desmethoxyyangonin) utilising accurate mass measurement for the determination of their elemental formulae and product ion MS (both sustained off-resonance irradiation collision-induced dissociation and infrared multiphoton dissociation (SORI-CID and IRMPD) for structural confirmation. High performance liquid chromatography/FT-ICR-MS with a dual spray system for internal calibration of mass spectra was employed for accurate mass measurement and the determination of elemental formulae of the kavalactones in both standards and a root extract to confirm the presence of the kavalactones in the root powder. Mass accuracy of < 1 ppm was achieved. For structural confirmation, the IRMPD and SORI-CID spectra of the kavalactones in standards and a kava root powder extract were compared. Accurate mass measurement of the product ions was also conducted by external calibration and the elemental formula determined to aid with structural confirmation. The presence of the same fragment ions detected in the standards as in the extract further confirmed the presence of the kavalactones in the kava root powder with high certainty.


Assuntos
Kava/química , Calibragem , Cromatografia Líquida de Alta Pressão , Ciclotrons , Análise de Fourier , Raios Infravermelhos , Espectrometria de Massas , Raízes de Plantas/química , Pós , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray
16.
Rapid Commun Mass Spectrom ; 19(3): 375-80, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15645509

RESUMO

Accurate quantitation has been demonstrated on many different types of mass spectrometer. However, quantitative applications of Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) have been limited. In this study, the quantitative potential of FTICRMS has been investigated using an exact matching isotope dilution method for the determination of creatinine in serum. Creatinine is an important clinical biomarker and its measurement is used as an assessment of renal function. The quantitation of creatinine was selected because a high-accuracy high-performance liquid chromatography/mass spectrometry (HPLC/MS) determination using a triple quadrupole mass spectrometer has already been successfully developed in-house. Therefore, a direct comparison of the quantitative capability of FTICRMS could be made against an established method. The accuracy of the quantitation of creatinine was found to be equivalent to that obtained using LC/MS. However, the expanded measurement uncertainty (k = 2) was larger, at 6%, when using FTICRMS compared with 1% when using HPLC/MS with the triple quadrupole mass spectrometer.


Assuntos
Creatinina/sangue , Testes de Função Renal , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cromatografia Líquida de Alta Pressão , Ciclotrons , Marcação por Isótopo , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier/estatística & dados numéricos
17.
Rapid Commun Mass Spectrom ; 18(24): 3035-40, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15543531

RESUMO

The use of a second electrospray nebuliser has proved to be highly successful for exact mass measurement during high-performance liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry (HPLC/FTICRMS). Much improved accuracy and precision of mass measurement were afforded by the introduction of the internal calibration solution, thus overcoming space charge issues due to the lack of control over relative ion abundances of the species eluting from the HPLC column. Further, issues of suppression of ionisation, observed when using a T-piece method, are addressed and this simple system has significant benefits over other more elaborate approaches providing data that compares very favourably with these other approaches. The technique is robust, flexible and transferable and can be used in conjunction with HPLC, infusion or flow injection analysis (FIA) to provide constant internal calibration signals to allow routine, accurate and precise mass measurements to be recorded.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Nebulizadores e Vaporizadores , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Calibragem , Cromatografia Líquida de Alta Pressão/instrumentação , Ciclotrons , Gramicidina/análise , Ácidos Mandélicos/análise , Peso Molecular , Reserpina/análise , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Terfenadina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...