Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 91(1): e0047622, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36448839

RESUMO

Clostridioides difficile causes antibiotic-associated diseases in humans, ranging from mild diarrhea to severe pseudomembranous colitis and death. A major clinical challenge is the prevention of disease recurrence, which affects nearly ~20 to 30% of the patients with a primary C. difficile infection (CDI). During CDI, C. difficile forms metabolically dormant spores that are essential for recurrence of CDI (R-CDI). In prior studies, we have shown that C. difficile spores interact with intestinal epithelial cells (IECs), which contribute to R-CDI. However, this interaction remains poorly understood. Here, we provide evidence that C. difficile spores interact with E-cadherin, contributing to spore adherence and internalization into IECs. C. difficile toxins TcdA and TcdB lead to adherens junctions opening and increase spore adherence to IECs. Confocal micrographs demonstrate that C. difficile spores associate with accessible E-cadherin; spore-E-cadherin association increases upon TcdA and TcdB intoxication. The presence of anti-E-cadherin antibodies decreased spore adherence and entry into IECs. By enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and immunogold labeling, we observed that E-cadherin binds to C. difficile spores, specifically to the hairlike projections of the spore, reducing spore adherence to IECs. Overall, these results expand our knowledge of how C. difficile spores bind to IECs by providing evidence that E-cadherin acts as a spore adherence receptor to IECs and by revealing how toxin-mediated damage affects spore interactions with IECs.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Junções Aderentes , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides , Esporos Bacterianos , Caderinas/metabolismo
3.
Nat Commun ; 12(1): 1140, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602902

RESUMO

Clostridioides difficile spores produced during infection are important for the recurrence of the disease. Here, we show that C. difficile spores gain entry into the intestinal mucosa via pathways dependent on host fibronectin-α5ß1 and vitronectin-αvß1. The exosporium protein BclA3, on the spore surface, is required for both entry pathways. Deletion of the bclA3 gene in C. difficile, or pharmacological inhibition of endocytosis using nystatin, leads to reduced entry into the intestinal mucosa and reduced recurrence of the disease in a mouse model. Our findings indicate that C. difficile spore entry into the intestinal barrier can contribute to spore persistence and infection recurrence, and suggest potential avenues for new therapies.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Intestinos/microbiologia , Intestinos/patologia , Esporos Bacterianos/fisiologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Linhagem Celular , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/ultraestrutura , Colágeno/metabolismo , Endocitose , Células Epiteliais/ultraestrutura , Feminino , Fibronectinas/metabolismo , Humanos , Integrinas/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Nistatina/farmacologia , Ligação Proteica/efeitos dos fármacos , Recidiva , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/ultraestrutura , Ácido Taurocólico/farmacologia , Vitronectina/metabolismo
4.
J Microbiol Methods ; 154: 46-51, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30291882

RESUMO

Clostridium difficile infections are one of the leading causes of hospital-acquired infections. C. difficile spores are considered the morphotype of transmission and recurrent infection due to its natural spore resistance properties. The outermost spore layer, the exosporium, provides the first contact with the environment and the host. However, molecular biology studies on exosporium proteins are lacking primarily due to difficulties in over-expressing these proteins under soluble conditions. In this work, we have developed a protocol to express soluble exosporium proteins of C. difficile spores in the heterologous Escherichia coli host. We found that the optimum soluble expression conditions may vary between 21, 30 and 37 °C, depending on the protein, and at least CdeC, BclA1 and BclA3, required E. coli strains that provided an oxidative environment such as Shuffle T7. These results will allow further studies with recombinant proteins of the exosporium of C. difficile spores.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Esporos Bacterianos/química , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/genética , Clostridioides difficile/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Esporos Bacterianos/genética , Temperatura
5.
Anaerobe ; 25: 18-30, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24269655

RESUMO

Spores of Clostridium difficile are essential for infection, persistence and transmission of C. difficile infections (CDI). Proteins of the surface of C. difficile spores are thought to be essential for initiation and persistence of CDI. In this work, we demonstrate that three C. difficile collagen-like exosporium proteins (BclA) encoded in the C. difficile 630 genome are expressed during sporulation and localize to the spore via their N-terminal domains. Using polyclonal antibodies against the N- and C-terminal domains and full length BclA1 we demonstrate that BclA1 is likely to be localized to the exosporium layer, presumably undergoes post-translational cleavages and might be cross-linked with other exosporium proteins. The collagen-like region of recombinant BclA1 and BclA2 was susceptible to collagenase degradation. Collagenase digestion assay of C. difficile spores suggests that, similarly as in Bacillus anthracis BclA, the N-terminal domain and the C-terminal domain of BclA1 might be buried in the basal layer and oriented to the exosporium surface, respectively. We also demonstrate that the collagen-like BclAs proteins do not contribute to the spore hydrophobicity and its absence slightly increased the adherence of spores to Caco-2 cells. BclA1 was also shown to have poor immunogenic properties. These results provide the first study on the BclA1 collagen-like proteins of C. difficile spores.


Assuntos
Proteínas de Bactérias/análise , Clostridioides difficile/química , Proteínas de Membrana/análise , Esporos/química , Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células CACO-2 , Clostridioides difficile/genética , Perfilação da Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peso Molecular , Processamento de Proteína Pós-Traducional , Esporos/genética
6.
PLoS One ; 7(8): e43635, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952726

RESUMO

BACKGROUND: Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we provide evidence that C. difficile spores are well suited to survive the host's innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells' ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells.


Assuntos
Clostridioides difficile/fisiologia , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Animais , Linhagem Celular , Sobrevivência Celular , Macrófagos/citologia , Camundongos , Fagocitose , Fagossomos/microbiologia , Sonicação , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...