Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 247, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525965

RESUMO

BACKGROUND: Infants with cystic fibrosis (CF) suffer from gastrointestinal (GI) complications, including pancreatic insufficiency and intestinal inflammation, which have been associated with impaired nutrition and growth. Recent evidence identified altered fecal microbiota taxonomic compositions in infants with CF relative to healthy infants that were characterized by differences in the abundances of taxa associated with GI health and nutrition. Furthermore, these taxonomic differences were more pronounced in low length infants with CF, suggesting a potential link to linear growth failure. We hypothesized that these differences would entail shifts in the microbiome's functional capacities that could contribute to inflammation and nutritional failure in infants with CF. RESULTS: To test this hypothesis, we compared fecal microbial metagenomic content between healthy infants and infants with CF, supplemented with an analysis of fecal metabolomes in infants with CF. We identified notable differences in CF fecal microbial functional capacities, including metabolic and environmental response functions, compared to healthy infants that intensified during the first year of life. A machine learning-based longitudinal metagenomic age analysis of healthy and CF fecal metagenomic functional profiles further demonstrated that these differences are characterized by a CF-associated delay in the development of these functional capacities. Moreover, we found metagenomic differences in functions related to metabolism among infants with CF that were associated with diet and antibiotic exposure, and identified several taxa as potential drivers of these functional differences. An integrated metagenomic and metabolomic analysis further revealed that abundances of several fecal GI metabolites important for nutrient absorption, including three bile acids, correlated with specific microbes in infants with CF. CONCLUSIONS: Our results highlight several metagenomic and metabolomic factors, including bile acids and other microbial metabolites, that may impact nutrition, growth, and GI health in infants with CF. These factors could serve as promising avenues for novel microbiome-based therapeutics to improve health outcomes in these infants.


Assuntos
Fibrose Cística/complicações , Fibrose Cística/microbiologia , Disbiose/complicações , Fezes/microbiologia , Gastroenteropatias/etiologia , Metaboloma , Metagenoma , Gastroenteropatias/microbiologia , Gastroenteropatias/fisiopatologia , Humanos , Lactente , Estudos Longitudinais , Metabolômica/métodos , Estudos Prospectivos
2.
Thorax ; 75(9): 780-790, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32631930

RESUMO

RATIONALE: The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments. OBJECTIVES: To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics. METHODS AND MEASUREMENTS: We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories. MAIN RESULTS: CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome. CONCLUSIONS: Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.


Assuntos
Antibacterianos/farmacologia , Bactérias , Fibrose Cística/microbiologia , Microbiota/efeitos dos fármacos , Escarro/microbiologia , Tobramicina/farmacologia , Administração por Inalação , Adolescente , Adulto , Idoso , Antibacterianos/uso terapêutico , Bactérias/genética , Bactérias/isolamento & purificação , Infecções Bacterianas/prevenção & controle , Criança , Fibrose Cística/fisiopatologia , Volume Expiratório Forçado , Humanos , Quimioterapia de Manutenção , Metagenoma/efeitos dos fármacos , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Fatores de Tempo , Tobramicina/uso terapêutico , Adulto Jovem
3.
Nat Med ; 26(2): 215-221, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959989

RESUMO

Most infants with cystic fibrosis (CF) have pancreatic exocrine insufficiency that results in nutrient malabsorption and requires oral pancreatic enzyme replacement. Newborn screening for CF has enabled earlier diagnosis, nutritional intervention and enzyme replacement for these infants, allowing most infants with CF to achieve their weight goals by 12 months of age1. Nevertheless, most infants with CF continue to have poor linear growth during their first year of life1. Although this early linear growth failure is associated with worse long-term respiratory function and survival2,3, the determinants of body length in infants with CF have not been defined. Several characteristics of the CF gastrointestinal (GI) tract, including inflammation, maldigestion and malabsorption, may promote intestinal dysbiosis4,5. As GI microbiome activities are known to affect endocrine functions6,7, the intestinal microbiome of infants with CF may also impact growth. We identified an early, progressive fecal dysbiosis that distinguished infants with CF and low length from infants with CF and normal length. This dysbiosis included altered abundances of taxa that perform functions that are important for GI health, nutrient harvest and growth hormone signaling, including decreased abundance of Bacteroidetes and increased abundance of Proteobacteria. Thus, the GI microbiota represent a potential therapeutic target for the correction of low linear growth in infants with CF.


Assuntos
Fibrose Cística/microbiologia , Disbiose/microbiologia , Fezes/microbiologia , Transtornos do Crescimento/etiologia , Tamanho Corporal , Estudos de Casos e Controles , Feminino , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Humanos , Lactente , Recém-Nascido , Inflamação , Estudos Longitudinais , Masculino , Análise Multivariada , Mutação , Triagem Neonatal , Estudos Prospectivos , Análise de Sequência de DNA
4.
PLoS Pathog ; 16(1): e1008251, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961914

RESUMO

Patients with cystic fibrosis (CF) have altered fecal microbiomes compared to those of healthy controls. The magnitude of this dysbiosis correlates with measures of CF gastrointestinal (GI) disease, including GI inflammation and nutrient malabsorption. However, whether this dysbiosis is caused by mutations in the CFTR gene, the underlying defect in CF, or whether CF-associated dysbiosis augments GI disease was not clear. To test the relationships between CFTR dysfunction, microbes, and intestinal health, we established a germ-free (GF) CF mouse model and demonstrated that CFTR gene mutations are sufficient to alter the GI microbiome. Furthermore, flow cytometric analysis demonstrated that colonized CF mice have increased mesenteric lymph node and spleen TH17+ cells compared with non-CF mice, suggesting that CFTR defects alter adaptive immune responses. Our findings demonstrate that CFTR mutations modulate both the host adaptive immune response and the intestinal microbiome.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fibrose Cística/genética , Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Modelos Animais de Doenças , Disbiose/genética , Disbiose/imunologia , Feminino , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação
5.
Cell Rep ; 26(8): 2227-2240.e5, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30784601

RESUMO

Metagenomic sequencing is a promising approach for identifying and characterizing organisms and their functional characteristics in complex, polymicrobial infections, such as airway infections in people with cystic fibrosis. These analyses are often hampered, however, by overwhelming quantities of human DNA, yielding only a small proportion of microbial reads for analysis. In addition, many abundant microbes in respiratory samples can produce large quantities of extracellular bacterial DNA originating either from biofilms or dead cells. We describe a method for simultaneously depleting DNA from intact human cells and extracellular DNA (human and bacterial) in sputum, using selective lysis of eukaryotic cells and endonuclease digestion. We show that this method increases microbial sequencing depth and, consequently, both the number of taxa detected and coverage of individual genes such as those involved in antibiotic resistance. This finding underscores the substantial impact of DNA from sources other than live bacteria in microbiological analyses of complex, chronic infection specimens.


Assuntos
Infecções Bacterianas/microbiologia , Código de Barras de DNA Taxonômico/métodos , Metagenoma , Metagenômica/métodos , Microbiota , Escarro/microbiologia , Infecções Bacterianas/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular/métodos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia
6.
Proc Natl Acad Sci U S A ; 115(7): 1605-1610, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378945

RESUMO

The mature human gut microbiota is established during the first years of life, and altered intestinal microbiomes have been associated with several human health disorders. Escherichia coli usually represents less than 1% of the human intestinal microbiome, whereas in cystic fibrosis (CF), greater than 50% relative abundance is common and correlates with intestinal inflammation and fecal fat malabsorption. Despite the proliferation of E. coli and other Proteobacteria in conditions involving chronic gastrointestinal tract inflammation, little is known about adaptation of specific characteristics associated with microbiota clonal expansion. We show that E. coli isolated from fecal samples of young children with CF has adapted to growth on glycerol, a major component of fecal fat. E. coli isolates from different CF patients demonstrate an increased growth rate in the presence of glycerol compared with E. coli from healthy controls, and unrelated CF E. coli strains have independently acquired this growth trait. Furthermore, CF and control E. coli isolates have differential gene expression when grown in minimal media with glycerol as the sole carbon source. While CF isolates display a growth-promoting transcriptional profile, control isolates engage stress and stationary-phase programs, which likely results in slower growth rates. Our results indicate that there is selection of unique characteristics within the microbiome of individuals with CF, which could contribute to individual disease outcomes.


Assuntos
Fibrose Cística/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Estudos de Casos e Controles , Pré-Escolar , Fibrose Cística/genética , Fibrose Cística/patologia , Gorduras na Dieta/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/patologia , Redes Reguladoras de Genes , Glicerol/metabolismo , Humanos , Lactente , Fosfolipídeos/metabolismo , Filogenia , Estados Unidos
7.
J Clin Gastroenterol ; 52(2): 155-163, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28030510

RESUMO

GOAL: To determine the effect of the specific carbohydrate diet (SCD) on active inflammatory bowel disease (IBD). BACKGROUND: IBD is a chronic idiopathic inflammatory intestinal disorder associated with fecal dysbiosis. Diet is a potential therapeutic option for IBD based on the hypothesis that changing the fecal dysbiosis could decrease intestinal inflammation. STUDY: Pediatric patients with mild to moderate IBD defined by pediatric Crohn's disease activity index (PCDAI 10-45) or pediatric ulcerative colitis activity index (PUCAI 10-65) were enrolled into a prospective study of the SCD. Patients started SCD with follow-up evaluations at 2, 4, 8, and 12 weeks. PCDAI/PUCAI, laboratory studies were assessed. RESULTS: Twelve patients, ages 10 to 17 years, were enrolled. Mean PCDAI decreased from 28.1±8.8 to 4.6±10.3 at 12 weeks. Mean PUCAI decreased from 28.3±23.1 to 6.7±11.6 at 12 weeks. Dietary therapy was ineffective for 2 patients while 2 individuals were unable to maintain the diet. Mean C-reactive protein decreased from 24.1±22.3 to 7.1±0.4 mg/L at 12 weeks in Seattle Cohort (nL<8.0 mg/L) and decreased from 20.7±10.9 to 4.8±4.5 mg/L at 12 weeks in Atlanta Cohort (nL<4.9 mg/L). Stool microbiome analysis showed a distinctive dysbiosis for each individual in most prediet microbiomes with significant changes in microbial composition after dietary change. CONCLUSIONS: SCD therapy in IBD is associated with clinical and laboratory improvements as well as concomitant changes in the fecal microbiome. Further prospective studies are required to fully assess the safety and efficacy of dietary therapy in patients with IBD.


Assuntos
Colite Ulcerativa/dietoterapia , Doença de Crohn/dietoterapia , Disbiose/dietoterapia , Fezes/microbiologia , Adolescente , Proteína C-Reativa/metabolismo , Criança , Colite Ulcerativa/fisiopatologia , Doença de Crohn/fisiopatologia , Carboidratos da Dieta/administração & dosagem , Feminino , Seguimentos , Humanos , Masculino , Estudos Prospectivos , Índice de Gravidade de Doença , Fatores de Tempo
8.
Nat Commun ; 7: 13414, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27834373

RESUMO

The nosocomial pathogen Acinetobacter baumannii is a frequent cause of hospital-acquired infections worldwide and is a challenge for treatment due to its evolved resistance to antibiotics, including carbapenems. Here, to gain insight on A. baumannii antibiotic resistance mechanisms, we analyse the protein interaction network of a multidrug-resistant A. baumannii clinical strain (AB5075). Using in vivo chemical cross-linking and mass spectrometry, we identify 2,068 non-redundant cross-linked peptide pairs containing 245 intra- and 398 inter-molecular interactions. Outer membrane proteins OmpA and YiaD, and carbapenemase Oxa-23 are hubs of the identified interaction network. Eighteen novel interactors of Oxa-23 are identified. Interactions of Oxa-23 with outer membrane porins OmpA and CarO are verified with co-immunoprecipitation analysis. Furthermore, transposon mutagenesis of oxa-23 or interactors of Oxa-23 demonstrates changes in meropenem or imipenem sensitivity in strain AB5075. These results provide a view of porin-localized antibiotic inactivation and increase understanding of bacterial antibiotic resistance mechanisms.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/fisiologia , Porinas/metabolismo , Acinetobacter baumannii/classificação , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Redes Reguladoras de Genes , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Consumo de Álcool por Menores
9.
PLoS One ; 11(7): e0158897, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391011

RESUMO

BACKGROUND: Comparative analysis of gut microbiomes in clinical studies of human diseases typically rely on identification and quantification of species or genes. In addition to exploring specific functional characteristics of the microbiome and potential significance of species diversity or expansion, microbiome similarity is also calculated to study change in response to therapies directed at altering the microbiome. Established ecological measures of similarity can be constructed from species abundances, however methods for calculating these commonly used ecological measures of similarity directly from whole genome shotgun (WGS) metagenomic sequence are lacking. RESULTS: We present an alignment-free method for calculating similarity of WGS metagenomic sequences that is analogous to the Bray-Curtis index for species, implemented by the General Utility for Testing Sequence Similarity (GUTSS) software application. This method was applied to intestinal microbiomes of healthy young children to measure developmental changes toward an adult microbiome during the first 3 years of life. We also calculate similarity of donor and recipient microbiomes to measure establishment, or engraftment, of donor microbiota in fecal microbiota transplantation (FMT) studies focused on mild to moderate Crohn's disease. We show how a relative index of similarity to donor can be calculated as a measure of change in a patient's microbiome toward that of the donor in response to FMT. CONCLUSION: Because clinical efficacy of the transplant procedure cannot be fully evaluated without analysis methods to quantify actual FMT engraftment, we developed a method for detecting change in the gut microbiome that is independent of species identification and database bias, sensitive to changes in relative abundance of the microbial constituents, and can be formulated as an index for correlating engraftment success with clinical measures of disease. More generally, this method may be applied to clinical evaluation of human microbiomes and provide potential diagnostic determination of individuals who may be candidates for specific therapies directed at alteration of the microbiome.


Assuntos
Doença de Crohn , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , Doadores Vivos , Metagenoma , Metagenômica , Alinhamento de Sequência , Adolescente , Adulto , Criança , Doença de Crohn/genética , Doença de Crohn/microbiologia , Doença de Crohn/terapia , Feminino , Humanos , Masculino
10.
Sci Rep ; 6: 22493, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26940651

RESUMO

Cystic fibrosis (CF) results in inflammation, malabsorption of fats and other nutrients, and obstruction in the gastrointestinal (GI) tract, yet the mechanisms linking these disease manifestations to microbiome composition remain largely unexplored. Here we used metagenomic analysis to systematically characterize fecal microbiomes of children with and without CF, demonstrating marked CF-associated taxonomic dysbiosis and functional imbalance. We further showed that these taxonomic and functional shifts were especially pronounced in young children with CF and diminished with age. Importantly, the resulting dysbiotic microbiomes had significantly altered capacities for lipid metabolism, including decreased capacity for overall fatty acid biosynthesis and increased capacity for degrading anti-inflammatory short-chain fatty acids. Notably, these functional differences correlated with fecal measures of fat malabsorption and inflammation. Combined, these results suggest that enteric fat abundance selects for pro-inflammatory GI microbiota in young children with CF, offering novel strategies for improving the health of children with CF-associated fat malabsorption.


Assuntos
Actinobacteria/genética , Fibrose Cística/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Metagenoma , Proteobactérias/genética , Biodiversidade , Pré-Escolar , Fibrose Cística/genética , Código de Barras de DNA Taxonômico , Disbiose/genética , Fezes/microbiologia , Humanos , Lactente , Recém-Nascido , Complexo Antígeno L1 Leucocitário/metabolismo
11.
mBio ; 7(2): e00154, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26956590

RESUMO

UNLABELLED: Salmonella enterica serovar Typhimurium is one of the most common S. enterica serovars associated with U.S. foodborne outbreaks. S. Typhimurium bacteria isolated from humans exhibit wide-ranging virulence phenotypes in inbred mice, leading to speculation that some strains are more virulent in nature. However, it is unclear whether increased virulence in humans is related to organism characteristics or initial treatment failure due to antibiotic resistance. Strain diversity and genetic factors contributing to differential human pathogenicity remain poorly understood. We reconstructed phylogeny, resolved genetic population structure, determined gene content and nucleotide variants, and conducted targeted phenotyping assays for S. Typhimurium strains collected between 1946 and 2012 from humans and animals in the United States and abroad. Strains from recent U.S. salmonellosis cases were associated with five S. Typhimurium lineages distributed within three phylogenetic clades, which are not restricted by geography, year of acquisition, or host. Notably, two U.S. strains and four Mexican strains are more closely related to strains associated with human immunodeficiency virus (HIV)-infected individuals in sub-Saharan Africa than to other North American strains. Phenotyping studies linked variants specific to these strains in hmpA and katE to loss of fitness under nitrosative and oxidative stress, respectively. These results suggest that U.S. salmonellosis is caused by diverse S. Typhimurium strains circulating worldwide. One lineage has mutations in genes affecting fitness related to innate immune system strategies for fighting pathogens and may be adapting to immunocompromised humans by a reduction in virulence capability, possibly due to a lack of selection for its maintenance as a result of the worldwide HIV epidemic. IMPORTANCE: Nontyphoidal Salmonella bacteria cause an estimated 1.2 million illnesses annually in the United States, 80 million globally, due to ingestion of contaminated food or water. Salmonella Typhimurium is one of the most common serovars associated with foodborne illness, causing self-limiting gastroenteritis and, in approximately 5% of infected patients, systemic infection. Although some S. Typhimurium strains are speculated to be more virulent than others, it is unknown how strain diversity and genetic factors contribute to differential human pathogenicity. Ours is the first study to examine the diversity of S. Typhimurium associated with recent cases of U.S. salmonellosis and to provide some initial correlation between observed genotypes and phenotypes. Definition of specific S. Typhimurium lineages based on such phenotype/genotype correlations may identify strains with greater capability of associating with specific food sources, allowing outbreaks to be more quickly identified. Additionally, defining simple correlates of pathogenesis may have predictive value for patient outcome.


Assuntos
Variação Genética , Compostos Nitrosos/toxicidade , Oxidantes/toxicidade , Salmonelose Animal/microbiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Estresse Fisiológico , Animais , Proteínas de Bactérias/genética , Doenças Transmitidas por Alimentos/microbiologia , Camundongos , Mutação , Estresse Oxidativo , Filogeografia , Salmonella typhimurium/classificação , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Estados Unidos
12.
PLoS One ; 10(8): e0133925, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26288277

RESUMO

OBJECTIVE: Fecal microbiota transplantation (FMT) is an investigational treatment for diseases thought to involve alterations in the intestinal microbiota including ulcerative colitis (UC). Case reports have described therapeutic benefit of FMT in patients with UC, possibly due to changes in the microbiota. We measured the degree to which the transplanted microbiota engraft following FMT in patients with UC using a donor similarity index (DSI). METHODS: Seven patients with mild to moderate UC (UC disease activity index scores 3-10) received a single colonoscopic administration of FMT. Metagenomic sequence data from stool were analyzed using an alignment-free comparison tool, to measure the DSI, and a phylogenetic analysis tool, to characterize taxonomic changes. Clinical, endoscopic, histologic, and fecal calprotectin outcome measures were also collected. RESULTS: One of 5 patients from whom sequencing data were available achieved the primary endpoint of 50% donor similarity at week 4; an additional 2 patients achieved 40% donor similarity. One patient with 40% donor similarity achieved clinical and histologic remission 1 month after FMT. However, these were lost by 2-3 months, and loss correlated with a decrease in DSI. The remaining patients did not demonstrate clinical response or remission. Histology scores improved in all but 1 patient. No patients remained in remission at 3 months after FMT. CONCLUSIONS: Following a single colonoscopic fecal transplant, a DSI of 40-50% is achieved in about two-thirds of recipients. This level of engraftment correlated with a temporary clinical improvement in only 1/5 patients. Larger sample sizes could further validate this method for measuring engraftment, and changes in transplant frequency or method might improve microbiota engraftment and efficacy. TRIAL REGISTRATION: ClinicalTrials.gov NCT01742754.


Assuntos
Colite Ulcerativa/microbiologia , Colite Ulcerativa/terapia , Colo/microbiologia , Colo/patologia , Fezes/microbiologia , Microbiota , Adulto , Colite Ulcerativa/patologia , Colonoscopia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
13.
Cell Host Microbe ; 18(3): 307-19, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26299432

RESUMO

Bacterial lineages that chronically infect cystic fibrosis (CF) patients genetically diversify during infection. However, the mechanisms driving diversification are unknown. By dissecting ten CF lung pairs and studying ∼12,000 regional isolates, we were able to investigate whether clonally related Pseudomonas aeruginosa inhabiting different lung regions evolve independently and differ functionally. Phylogenetic analysis of genome sequences showed that regional isolation of P. aeruginosa drives divergent evolution. We investigated the consequences of regional evolution by studying isolates from mildly and severely diseased lung regions and found evolved differences in bacterial nutritional requirements, host defense and antibiotic resistance, and virulence due to hyperactivity of the type 3 secretion system. These findings suggest that bacterial intermixing is limited in CF lungs and that regional selective pressures may markedly differ. The findings also may explain how specialized bacterial variants arise during infection and raise the possibility that pathogen diversification occurs in other chronic infections characterized by spatially heterogeneous conditions.


Assuntos
Fibrose Cística/complicações , Variação Genética , Pulmão/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Humanos , Dados de Sequência Molecular , Pseudomonas aeruginosa/isolamento & purificação , Análise de Sequência de DNA
14.
J Bacteriol ; 197(12): 2027-35, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25845845

RESUMO

UNLABELLED: Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE: Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Doenças Transmissíveis Emergentes/microbiologia , Genoma Bacteriano , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/classificação , Doenças Transmissíveis Emergentes/epidemiologia , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Biblioteca Gênica , Humanos , Mutação , Plasmídeos
15.
Inflamm Bowel Dis ; 21(3): 556-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25647155

RESUMO

BACKGROUND: Crohn's disease (CD) is a chronic idiopathic inflammatory intestinal disorder associated with fecal dysbiosis. Fecal microbial transplant (FMT) is a potential therapeutic option for individuals with CD based on the hypothesis that changing the fecal dysbiosis could promote less intestinal inflammation. METHODS: Nine patients, aged 12 to 19 years, with mild-to-moderate symptoms defined by Pediatric Crohn's Disease Activity Index (PCDAI of 10-29) were enrolled into a prospective open-label study of FMT in CD (FDA IND 14942). Patients received FMT by nasogastric tube with follow-up evaluations at 2, 6, and 12 weeks. PCDAI, C-reactive protein, and fecal calprotectin were evaluated at each study visit. RESULTS: All reported adverse events were graded as mild except for 1 individual who reported moderate abdominal pain after FMT. All adverse events were self-limiting. Metagenomic evaluation of stool microbiome indicated evidence of FMT engraftment in 7 of 9 patients. The mean PCDAI score improved with patients having a baseline of 19.7 ± 7.2, with improvement at 2 weeks to 6.4 ± 6.6 and at 6 weeks to 8.6 ± 4.9. Based on PCDAI, 7 of 9 patients were in remission at 2 weeks and 5 of 9 patients who did not receive additional medical therapy were in remission at 6 and 12 weeks. No or modest improvement was seen in patients who did not engraft or whose microbiome was most similar to their donor. CONCLUSIONS: This is the first study to demonstrate that FMT for CD may be a possible therapeutic option for CD. Further prospective studies are required to fully assess the safety and efficacy of the FMT in patients with CD.


Assuntos
Terapia Biológica , Doença de Crohn/terapia , Fezes/microbiologia , Microbiota , Adolescente , Adulto , Criança , Biologia Computacional , Doença de Crohn/microbiologia , Doença de Crohn/fisiopatologia , Feminino , Humanos , Masculino , Metagenoma , Prognóstico , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 112(10): E1096-105, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713353

RESUMO

We previously reported that lagging-strand genes accumulate mutations faster than those encoded on the leading strand in Bacillus subtilis. Although we proposed that orientation-specific encounters between replication and transcription underlie this phenomenon, the mechanism leading to the increased mutagenesis of lagging-strand genes remained unknown. Here, we report that the transcription-dependent and orientation-specific differences in mutation rates of genes require the B. subtilis Y-family polymerase, PolY1 (yqjH). We find that without PolY1, association of the replicative helicase, DnaC, and the recombination protein, RecA, with lagging-strand genes increases in a transcription-dependent manner. These data suggest that PolY1 promotes efficient replisome progression through lagging-strand genes, thereby reducing potentially detrimental breaks and single-stranded DNA at these loci. Y-family polymerases can alleviate potential obstacles to replisome progression by facilitating DNA lesion bypass, extension of D-loops, or excision repair. We find that the nucleotide excision repair (NER) proteins UvrA, UvrB, and UvrC, but not RecA, are required for transcription-dependent asymmetry in mutation rates of genes in the two orientations. Furthermore, we find that the transcription-coupling repair factor Mfd functions in the same pathway as PolY1 and is also required for increased mutagenesis of lagging-strand genes. Experimental and SNP analyses of B. subtilis genomes show mutational footprints consistent with these findings. We propose that the interplay between replication and transcription increases lesion susceptibility of, specifically, lagging-strand genes, activating an Mfd-dependent error-prone NER mechanism. We propose that this process, at least partially, underlies the accelerated evolution of lagging-strand genes.


Assuntos
Bacillus subtilis/genética , Genes Bacterianos , Dano ao DNA , Replicação do DNA , Mutagênese , Transcrição Gênica
17.
J Bacteriol ; 196(22): 3862-71, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182491

RESUMO

Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei.


Assuntos
Burkholderia/genética , Burkholderia/fisiologia , Percepção de Quorum/fisiologia , Regulon/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/classificação , Burkholderia mallei/classificação , Burkholderia mallei/genética , Burkholderia mallei/fisiologia , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Especificidade da Espécie
18.
BMC Genomics ; 15: 355, 2014 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-24886041

RESUMO

BACKGROUND: Shigella dysenteriae type 1 (Sd1) causes recurrent epidemics of dysentery associated with high mortality in many regions of the world. Sd1 infects humans at very low infectious doses (10 CFU), and treatment is complicated by the rapid emergence of antibiotic resistant Sd1 strains. Sd1 is only detected in the context of human infections, and the circumstances under which epidemics emerge and regress remain unknown. RESULTS: Phylogenomic analyses of 56 isolates collected worldwide over the past 60 years indicate that the Sd1 clone responsible for the recent pandemics emerged at the turn of the 20th century, and that the two world wars likely played a pivotal role for its dissemination. Several lineages remain ubiquitous and their phylogeny indicates several recent intercontinental transfers. Our comparative genomics analysis reveals that isolates responsible for separate outbreaks, though closely related to one another, have independently accumulated antibiotic resistance genes, suggesting that there is little or no selection to retain these genes in-between outbreaks. The genomes appear to be subjected to genetic drift that affects a number of functions currently used by diagnostic tools to identify Sd1, which could lead to the potential failure of such tools. CONCLUSIONS: Taken together, the Sd1 population structure and pattern of evolution suggest a recent emergence and a possible human carrier state that could play an important role in the epidemic pattern of infections of this human-specific pathogen. This analysis highlights the important role of whole-genome sequencing in studying pathogens for which epidemiological or laboratory investigations are particularly challenging.


Assuntos
Disenteria Bacilar/epidemiologia , Shigella dysenteriae/genética , Antibacterianos/farmacologia , Surtos de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , Disenteria Bacilar/história , Evolução Molecular , Variação Genética , Genoma Bacteriano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , História do Século XX , Humanos , Filogenia , Análise de Sequência de DNA , Shigella dysenteriae/classificação , Shigella dysenteriae/isolamento & purificação
19.
Am J Pathol ; 184(5): 1309-22, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24637292

RESUMO

Cystic fibrosis (CF) is a multiorgan disease caused by loss of a functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in many epithelia of the body. Here we report the pathology observed in the gastrointestinal organs of juvenile to adult CFTR-knockout ferrets. CF gastrointestinal manifestations included gastric ulceration, intestinal bacterial overgrowth with villous atrophy, and rectal prolapse. Metagenomic phylogenetic analysis of fecal microbiota by deep sequencing revealed considerable genotype-independent microbial diversity between animals, with the majority of taxa overlapping between CF and non-CF pairs. CF hepatic manifestations were variable, but included steatosis, necrosis, biliary hyperplasia, and biliary fibrosis. Gallbladder cystic mucosal hyperplasia was commonly found in 67% of CF animals. The majority of CF animals (85%) had pancreatic abnormalities, including extensive fibrosis, loss of exocrine pancreas, and islet disorganization. Interestingly, 2 of 13 CF animals retained predominantly normal pancreatic histology (84% to 94%) at time of death. Fecal elastase-1 levels from these CF animals were similar to non-CF controls, whereas all other CF animals evaluated were pancreatic insufficient (<2 µg elastase-1 per gram of feces). These findings suggest that genetic factors likely influence the extent of exocrine pancreas disease in CF ferrets and have implications for the etiology of pancreatic sufficiency in CF patients. In summary, these studies demonstrate that the CF ferret model develops gastrointestinal pathology similar to CF patients.


Assuntos
Envelhecimento/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Trato Gastrointestinal/patologia , Técnicas de Inativação de Genes , Animais , Atrofia , Bactérias/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Furões , Trato Gastrointestinal/anormalidades , Humanos , Muco/metabolismo , Especificidade de Órgãos
20.
Clin Infect Dis ; 58(3): 396-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24178246

RESUMO

Cystic fibrosis gastrointestinal disease includes nutrient malabsorption and intestinal inflammation. We show that the abundances of Escherichia coli in fecal microbiota were significantly higher in young children with cystic fibrosis than in controls and correlated with fecal measures of nutrient malabsorption and inflammation, suggesting that E. coli could contribute to cystic fibrosis gastrointestinal dysfunction.


Assuntos
Fibrose Cística/complicações , Disbiose/complicações , Disbiose/microbiologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/microbiologia , Gastroenteropatias/microbiologia , Gastroenteropatias/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Gastroenteropatias/etiologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...