Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Leukoc Biol ; 115(3): 420-434, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37939820

RESUMO

Cystic fibrosis is a life-shortening genetic disorder, caused by mutations in the gene that encodes cystic fibrosis transmembrane-conductance regulator, a cAMP-activated chloride and bicarbonate channel. Persistent neutrophilic inflammation is a major contributor to cystic fibrosis lung disease. However, how cystic fibrosis transmembrane-conductance regulator loss of function leads to excessive inflammation and its clinical sequela remains incompletely understood. In this study, neutrophils from F508del-CF and healthy control participants were compared for gene transcription. We found that cystic fibrosis circulating neutrophils have a prematurely primed basal state with significantly higher scores for activation, chemotaxis, immune signaling, and pattern recognition. Such an irregular basal state appeared not related to the blood environment and was also observed in neutrophils derived from the F508del-CF HL-60 cell line, indicating an innate characteristic of the phenotype. Lipopolysaccharides (LPS) stimulation drastically shifted the transcriptional landscape of healthy control neutrophils toward a robust immune response; however, cystic fibrosis neutrophils were immune-exhausted, reflected by abnormal cell aging and fate determination in gene programming. Moreover, cystic fibrosis sputum neutrophils differed significantly from cystic fibrosis circulating neutrophils in gene transcription with increased inflammatory response, aging, apoptosis, and necrosis, suggesting additional environmental influences on the neutrophils in cystic fibrosis lungs. Taken together, our data indicate that loss of cystic fibrosis transmembrane-conductance regulator function has intrinsic effects on neutrophil immune programming, leading to premature priming and dysregulated response to challenge.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Neutrófilos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Imunidade , Inflamação , Mutação
2.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581936

RESUMO

Secondary lung infection by inhaled Staphylococcus aureus (SA) is a common and lethal event for individuals infected with influenza A virus (IAV). How IAV disrupts host defense to promote SA infection in lung alveoli, where fatal lung injury occurs, is not known. We addressed this issue using real-time determinations of alveolar responses to IAV in live, intact, perfused lungs. Our findings show that IAV infection blocked defensive alveolar wall liquid (AWL) secretion and induced airspace liquid absorption, thereby reversing normal alveolar liquid dynamics and inhibiting alveolar clearance of inhaled SA. Loss of AWL secretion resulted from inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel in the alveolar epithelium, and airspace liquid absorption was caused by stimulation of the alveolar epithelial Na+ channel (ENaC). Loss of AWL secretion promoted alveolar stabilization of inhaled SA, but rescue of AWL secretion protected against alveolar SA stabilization and fatal SA-induced lung injury in IAV-infected mice. These findings reveal a central role for AWL secretion in alveolar defense against inhaled SA and identify AWL inhibition as a critical mechanism of IAV lung pathogenesis. AWL rescue may represent a new therapeutic approach for IAV-SA coinfection.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Lesão Pulmonar , Camundongos , Animais , Humanos , Influenza Humana/patologia , Lesão Pulmonar/patologia , Coinfecção/patologia , Alvéolos Pulmonares/patologia , Pulmão/patologia
3.
medRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747678

RESUMO

Cystic fibrosis (CF) is a life-shortening genetic disorder, caused by mutations in the gene that encodes Cystic Fibrosis Transmembrane-conductance Regulator (CFTR), a cAMP-activated chloride and bicarbonate channel. Although multiple organ systems can be affected, CF lung disease claims the most morbidity and mortality due to chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite the clear predominance of neutrophils in these pathologies, how CFTR loss-of-function affects these cells per se remains incompletely understood. Here, we report the profiling and comparing of transcriptional signatures of peripheral blood neutrophils from CF participants and healthy human controls (HC) at the single-cell level. Circulating CF neutrophils had an aberrant basal state with significantly higher scores for activation, chemotaxis, immune signaling, and pattern recognition, suggesting that CF neutrophils in blood are prematurely primed. Such an abnormal basal state was also observed in neutrophils derived from an F508del-CF HL-60 cell line, indicating an innate characteristic of the phenotype. LPS stimulation drastically shifted the transcriptional landscape of HC circulating neutrophils towards a robust immune response, however, CF neutrophils were immune-exhausted. Moreover, CF blood neutrophils differed significantly from CF sputum neutrophils in gene programming with respect to neutrophil activation and aging, as well as inflammatory signaling, highlighting additional environmental influences on the neutrophils in CF lungs. Taken together, loss of CFTR function has intrinsic effects on neutrophil immune programming that leads to premature priming and dysregulated response to challenge.

4.
Cell Rep ; 41(11): 111797, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516754

RESUMO

Persistent neutrophil-dominated lung inflammation contributes to lung damage in cystic fibrosis (CF). However, the mechanisms that drive persistent lung neutrophilia and tissue deterioration in CF are not well characterized. Starting from the observation that, in patients with CF, c-c motif chemokine receptor 2 (CCR2)+ monocytes/macrophages are abundant in the lungs, we investigate the interplay between monocytes/macrophages and neutrophils in perpetuating lung tissue damage in CF. Here we show that CCR2+ monocytes in murine CF lungs drive pathogenic transforming growth factor ß (TGF-ß) signaling and sustain a pro-inflammatory environment by facilitating neutrophil recruitment. Targeting CCR2 to lower the numbers of monocytes in CF lungs ameliorates neutrophil inflammation and pathogenic TGF-ß signaling and prevents lung tissue damage. This study identifies CCR2+ monocytes as a neglected contributor to the pathogenesis of CF lung disease and as a therapeutic target for patients with CF, for whom lung hyperinflammation and tissue damage remain an issue despite recent advances in CF transmembrane conductance regulator (CFTR)-specific therapeutic agents.


Assuntos
Fibrose Cística , Pneumonia , Humanos , Camundongos , Animais , Fibrose Cística/patologia , Monócitos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística , Pneumonia/patologia , Pulmão/patologia , Inflamação/patologia , Receptores de Quimiocinas/metabolismo , Macrófagos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Clin Chest Med ; 43(4): 631-646, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344071

RESUMO

As we characterize the clinical benefits of highly effective modulator therapy (HEMT) in the cystic fibrosis (CF) population, our paradigm for treating and monitoring disease continues to evolve. More sensitive approaches are necessary to detect early disease and clinical progression. This article reviews evolving strategies to assess disease control and progression in the HEMT era. This article also explores developments in pulmonary function monitoring, advanced respiratory imaging, tools for the collection of patient-reported outcomes, and their application to profile individual responses, guide therapeutic decisions, and improve the quality of life of people with CF.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/terapia , Qualidade de Vida , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Pulmão
8.
Nat Commun ; 13(1): 494, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078977

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, however our understanding of cell specific mechanisms underlying COPD pathobiology remains incomplete. Here, we analyze single-cell RNA sequencing profiles of explanted lung tissue from subjects with advanced COPD or control lungs, and we validate findings using single-cell RNA sequencing of lungs from mice exposed to 10 months of cigarette smoke, RNA sequencing of isolated human alveolar epithelial cells, functional in vitro models, and in situ hybridization and immunostaining of human lung tissue samples. We identify a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance in COPD. Using transcriptomic network analyses, we predict capillary endothelial cells are inflamed in COPD, particularly through increased CXCL-motif chemokine signaling. Finally, we detect a high-metallothionein expressing macrophage subpopulation enriched in advanced COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.


Assuntos
Células Epiteliais Alveolares/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , RNA-Seq/métodos , Análise de Célula Única/métodos , Células A549 , Células Epiteliais Alveolares/classificação , Animais , Células Cultivadas , Análise por Conglomerados , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Pulmão/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença Pulmonar Obstrutiva Crônica/patologia , Transdução de Sinais/genética
9.
Eur Respir J ; 58(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33958427

RESUMO

BACKGROUND: Acute pulmonary exacerbations (AE) are episodes of clinical worsening in cystic fibrosis (CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function declines associated with acute inflammation during AE. Based on our previous observations that airway protein short palate lung nasal epithelium clone 1 (SPLUNC1) is regulated by inflammatory signals, we investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF. METHODS: We enrolled CF participants from two independent cohorts to measure AE markers of inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period. RESULTS: SPLUNC1 levels were high in healthy controls (n=9, 10.7 µg·mL-1), and significantly decreased in CF participants without AE (n=30, 5.7 µg·mL-1; p=0.016). SPLUNC1 levels were 71.9% lower during AE (n=14, 1.6 µg·mL-1; p=0.0034) regardless of age, sex, CF-causing mutation or microbiology findings. Cytokines interleukin-1ß and tumour necrosis factor-α were also increased in AE, whereas lung function did not decrease consistently. Stable CF participants with lower SPLUNC1 levels were much more likely to have an AE at 60 days (hazard ratio (HR)±se 11.49±0.83; p=0.0033). Low-SPLUNC1 stable participants remained at higher AE risk even 1 year after sputum collection (HR±se 3.21±0.47; p=0.0125). SPLUNC1 was downregulated by inflammatory cytokines and proteases increased in sputum during AE. CONCLUSION: In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.


Assuntos
Fibrose Cística , Glicoproteínas , Humanos , Pulmão , Mucosa Nasal , Fosfoproteínas
11.
Nat Commun ; 12(1): 1399, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658521

RESUMO

Staphylococcus aureus is a prominent human pathogen that readily adapts to host immune defenses. Here, we show that, in contrast to Gram-negative pathogens, S. aureus induces a distinct airway immunometabolic response dominated by the release of the electrophilic metabolite, itaconate. The itaconate synthetic enzyme, IRG1, is activated by host mitochondrial stress, which is induced by staphylococcal glycolysis. Itaconate inhibits S. aureus glycolysis and selects for strains that re-direct carbon flux to fuel extracellular polysaccharide (EPS) synthesis and biofilm formation. Itaconate-adapted strains, as illustrated by S. aureus isolates from chronic airway infection, exhibit decreased glycolytic activity, high EPS production, and proficient biofilm formation even before itaconate stimulation. S. aureus thus adapts to the itaconate-dominated immunometabolic response by producing biofilms, which are associated with chronic infection of the human airway.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Staphylococcus aureus/patogenicidade , Succinatos/metabolismo , Adulto , Animais , Biofilmes/crescimento & desenvolvimento , Líquido da Lavagem Broncoalveolar , Metabolismo dos Carboidratos , Fibrose Cística/microbiologia , Regulação Bacteriana da Expressão Gênica , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Hidroliases/metabolismo , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escarro/microbiologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Estresse Fisiológico , Succinatos/farmacologia , Ácido Succínico/metabolismo , Adulto Jovem
12.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33290275

RESUMO

The pathogenesis of chronic obstructive pulmonary disease (COPD) involves aberrant responses to cellular stress caused by chronic cigarette smoke (CS) exposure. However, not all smokers develop COPD and the critical mechanisms that regulate cellular stress responses to increase COPD susceptibility are not understood. Because microRNAs are well-known regulators of cellular stress responses, we evaluated microRNA expression arrays performed on distal parenchymal lung tissue samples from 172 subjects with and without COPD. We identified miR-24-3p as the microRNA that best correlated with radiographic emphysema and validated this finding in multiple cohorts. In a CS exposure mouse model, inhibition of miR-24-3p increased susceptibility to apoptosis, including alveolar type II epithelial cell apoptosis, and emphysema severity. In lung epithelial cells, miR-24-3p suppressed apoptosis through the BH3-only protein BIM and suppressed homology-directed DNA repair and the DNA repair protein BRCA1. Finally, we found BIM and BRCA1 were increased in COPD lung tissue, and BIM and BRCA1 expression inversely correlated with miR-24-3p. We concluded that miR-24-3p, a regulator of the cellular response to DNA damage, is decreased in COPD, and decreased miR-24-3p increases susceptibility to emphysema through increased BIM and apoptosis.


Assuntos
Apoptose/genética , Dano ao DNA/genética , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Idoso , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular , Fumar Cigarros/efeitos adversos , Estudos de Coortes , Reparo do DNA , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos AKR , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
13.
Am J Respir Crit Care Med ; 202(10): 1419-1429, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32603604

RESUMO

Rationale: Cystic fibrosis (CF) is a life-shortening, multisystem hereditary disease caused by abnormal chloride transport. CF lung disease is driven by innate immune dysfunction and exaggerated inflammatory responses that contribute to tissue injury. To define the transcriptional profile of this airway immune dysfunction, we performed the first single-cell transcriptome characterization of CF sputum.Objectives: To define the transcriptional profile of sputum cells and its implication in the pathogenesis of immune function and the development of CF lung disease.Methods: We performed single-cell RNA sequencing of sputum cells from nine subjects with CF and five healthy control subjects. We applied novel computational approaches to define expression-based cell function and maturity profiles, herein called transcriptional archetypes.Measurements and Main Results: The airway immune cell repertoire shifted from alveolar macrophages in healthy control subjects to a predominance of recruited monocytes and neutrophils in CF. Recruited lung mononuclear phagocytes were abundant in CF and were separated into the following three archetypes: activated monocytes, monocyte-derived macrophages, and heat shock-activated monocytes. Neutrophils were the most prevalent in CF, with a dominant immature proinflammatory archetype. Although CF monocytes exhibited proinflammatory features, both monocytes and neutrophils showed transcriptional evidence of abnormal phagocytic and cell-survival programs.Conclusions: Our findings offer an opportunity to understand subject-specific immune dysfunction and its contribution to divergent clinical courses in CF. As we progress toward personalized applications of therapeutic and genomic developments, we hope this inflammation-profiling approach will enable further discoveries that change the natural history of CF lung disease.


Assuntos
Resistência das Vias Respiratórias/genética , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Inflamação/genética , Inflamação/fisiopatologia , Ativação Transcricional/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única
14.
Infect Control Hosp Epidemiol ; 41(11): 1335-1337, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32507113

RESUMO

During the COVID-19 pandemic, the antimicrobial stewardship module in our electronic medical record was reconfigured for the management of COVID-19 patients. This change allowed our subspecialist providers to review charts quickly to optimize potential therapy and management during the patient surge.


Assuntos
Infecções por Coronavirus , Registros Eletrônicos de Saúde , Pandemias , Pneumonia Viral , Gestão de Antimicrobianos/métodos , Betacoronavirus , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/terapia , Humanos , Pneumonia Viral/sangue , Pneumonia Viral/terapia , SARS-CoV-2 , Software
15.
Chest ; 158(4): 1397-1408, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32553536

RESUMO

BACKGROUND: Tocilizumab, an IL-6 receptor antagonist, can be used to treat cytokine release syndrome (CRS), with observed improvements in a coronavirus disease 2019 (COVID-19) case series. RESEARCH QUESTION: The goal of this study was to determine if tocilizumab benefits patients hospitalized with COVID-19. STUDY DESIGN AND METHODS: This observational study of consecutive COVID-19 patients hospitalized between March 10, 2020, and March 31, 2020, and followed up through April 21, 2020, was conducted by chart review. Patients were treated with tocilizumab using an algorithm that targeted CRS. Survival and mechanical ventilation (MV) outcomes were reported for 14 days and stratified according to disease severity designated at admission (severe, ≥ 3 L supplemental oxygen to maintain oxygen saturation > 93%). For tocilizumab-treated patients, pre/post analyses of clinical response, biomarkers, and safety outcomes were assessed. Post hoc survival analyses were conducted for race/ethnicity. RESULTS: Among the 239 patients, median age was 64 years; 36% and 19% were black and Hispanic, respectively. Hospital census increased exponentially, yet MV census did not. Severe disease was associated with lower survival (78% vs 93%; P < .001), greater proportion requiring MV (44% vs 5%; P < .001), and longer median MV days (5.5 vs 1.0; P = .003). Tocilizumab-treated patients (n = 153 [64%]) comprised 90% of those with severe disease; 44% of patients with nonsevere disease received tocilizumab for evolving CRS. Tocilizumab-treated patients with severe disease had higher admission levels of high-sensitivity C-reactive protein (120 vs 71 mg/L; P < .001) and received tocilizumab sooner (2 vs 3 days; P < .001), but their survival was similar to that of patients with nonsevere disease (83% vs 91%; P = .11). For tocilizumab-treated patients requiring MV, survival was 75% (95% CI, 64-89). Following tocilizumab treatment, few adverse events occurred, and oxygenation and inflammatory biomarkers (eg, high-sensitivity C-reactive protein, IL-6) improved; however, D-dimer and soluble IL-2 receptor (also termed CD25) levels increased significantly. Survival in black and Hispanic patients, after controlling for age, was significantly higher than in white patients (log-rank test, P = .002). INTERPRETATION: A treatment algorithm that included tocilizumab to target CRS may influence MV and survival outcomes. In tocilizumab-treated patients, oxygenation and inflammatory biomarkers improved, with higher than expected survival. Randomized trials must confirm these findings.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/complicações , Infecções por Coronavirus/terapia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/virologia , Pneumonia Viral/complicações , Pneumonia Viral/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , COVID-19 , Infecções por Coronavirus/mortalidade , Síndrome da Liberação de Citocina/mortalidade , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/mortalidade , Respiração Artificial , SARS-CoV-2 , Taxa de Sobrevida , Resultado do Tratamento , Adulto Jovem
16.
Cell Metab ; 31(6): 1091-1106.e6, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32428444

RESUMO

The bacterium Pseudomonas aeruginosa is especially pathogenic, often being associated with intractable pneumonia and high mortality. How P. aeruginosa avoids immune clearance and persists in the inflamed human airway remains poorly understood. In this study, we show that P. aeruginosa can exploit the host immune response to maintain infection. Notably, unlike other opportunistic bacteria, we found that P. aeruginosa alters its metabolic and immunostimulatory properties in response to itaconate, an abundant host-derived immunometabolite in the infected lung. Itaconate induces bacterial membrane stress, resulting in downregulation of lipopolysaccharides (LPS) and upregulation of extracellular polysaccharides (EPS). These itaconate-adapted P. aeruginosa accumulate lptD mutations, which favor itaconate assimilation and biofilm formation. EPS, in turn, induces itaconate production by myeloid cells, both in the airway and systemically, skewing the host immune response to one permissive of chronic infection. Thus, the metabolic versatility of P. aeruginosa needs to be taken into account when designing therapies.


Assuntos
Biofilmes , Pseudomonas aeruginosa/metabolismo , Succinatos/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Front Immunol ; 11: 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117248

RESUMO

Bacterial lung infections are major healthcare challenges killing millions of people worldwide and resulting in a huge economic burden. Both basic and clinical research have elucidated host mechanisms that contribute to the bacterial clearance where an indispensable role of immune cells has been established. However, the role of respiratory epithelial cells in bacterial clearance has garnered limited attention due to their weak inflammatory or phagocytic ability compared to immune cells such as macrophages and neutrophils. These studies often underappreciate the fact that epithelial cells are the most abundant cells in the lung, not only serving as building blocks but also providing immune protection throughout the lung. Epithelial cells function either independently to eradicate the pathogen or communicate with immune cells to orchestrate pathogen clearance. The epithelial cells have multiple mechanisms that include mucus production, antimicrobial peptide production, muco-ciliary clearance, and phagocytosis, all of which contribute to their direct antibacterial function. Secretion of cytokines to recruit immune cells and potentiate their antimicrobial activities is a pathway by which the epithelium contributes to bacterial clearance. Successful pathogens outsmart epithelial resistance and find a way to replicate in sufficient numbers to establish infections in the airway or lung epithelial surfaces. In this mini-review, we discuss evidences that establish important roles for epithelial host defense against invading respiratory bacterial pathogens and demonstrate how pathogens outsmart these epithelial immune mechanisms to successfully establish infection. Finally, we discuss briefly how to boost epithelial immunity to improve outcomes in bacterial lung infections.


Assuntos
Bactérias/imunologia , Infecções Bacterianas/imunologia , Células Epiteliais/imunologia , Evasão da Resposta Imune/imunologia , Mucosa Respiratória/imunologia , Infecções Respiratórias/imunologia , Animais , Infecções Bacterianas/microbiologia , Citocinas/metabolismo , Humanos , Pulmão/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Infecções Respiratórias/microbiologia
19.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L321-L333, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461288

RESUMO

Bpifa1 (BPI fold-containing group A member 1) is an airway host-protective protein with immunomodulatory properties that binds to LPS and is regulated by infectious and inflammatory signals. Differential expression of Bpifa1 has been widely reported in lung disease, yet the biological significance of this observation is unclear. We sought to understand the role of Bpifa1 fluctuations in modulating lung inflammation. We treated wild-type (WT) and Bpifa1-/- mice with intranasal LPS and performed immunological and transcriptomic analyses of lung tissue to determine the immune effects of Bpifa1 deficiency. We show that neutrophil (polymorphonuclear cells, PMNs) lung recruitment and transmigration to the airways in response to LPS is impaired in Bpifa1-/- mice. Transcriptomic analysis revealed a signature of 379 genes that differentiated Bpifa1-/- from WT mice. During acute lung inflammation, the most downregulated genes in Bpifa1-/- mice were Cxcl9 and Cxcl10. Bpifa1-/- mice had lower bronchoalveolar lavage concentrations of C-X-C motif chemokine ligand 10 (Cxcl10) and Cxcl9, interferon-inducible PMN chemokines. This was consistent with lower expression of IFNγ, IFNλ, downstream IFN-stimulated genes, and IFN-regulatory factors, which are important for the innate immune response. Administration of Cxcl10 before LPS treatment restored the inflammatory response in Bpifa1-/- mice. Our results identify a novel role for Bpifa1 in the regulation of Cxcl10-mediated PMN recruitment to the lungs via IFNγ and -λ signaling during acute inflammation.


Assuntos
Glicoproteínas/efeitos dos fármacos , Glicoproteínas/genética , Inflamação/tratamento farmacológico , Infiltração de Neutrófilos/efeitos dos fármacos , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/genética , Doença Aguda , Animais , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/fisiologia
20.
J Immunol ; 201(2): 615-626, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29891554

RESUMO

Chitinases and chitinase-like proteins are an evolutionary conserved group of proteins. In the absence of chitin synthesis in mammals, the conserved presence of chitinases suggests their roles in physiology and immunity, but experimental evidence to prove these roles is scarce. Chitotriosidase (chit1) is one of the two true chitinases present in mammals and the most prevalent chitinase in humans. In this study, we investigated the regulation and the role of chit1 in a mouse model of Klebsiella pneumoniae lung infection. We show that chitinase activity in bronchoalveolar lavage fluid is significantly reduced during K. pneumoniae lung infection. This reduced activity is inversely correlated with the number of neutrophils. Further, instilling neutrophil lysates in lungs decreased chitinase activity. We observed degradation of chit1 by neutrophil proteases. In a mouse model, chit1 deficiency provided a significant advantage to the host during K. pneumoniae lung infection by limiting bacterial dissemination. This phenotype was independent of inflammatory changes in chit1-/- mice as they exerted a similar inflammatory response. The decreased dissemination resulted in improved survival in chit1-/- mice infected with K. pneumoniae in the presence or absence of antibiotic therapy. The beneficial effects of chit1 deficiency were associated with altered Akt activation in the lungs. Chit1-/- mice induced a more robust Akt activation postinfection. The role of the Akt pathway in K. pneumoniae lung infection was confirmed by using an Akt inhibitor, which impaired health and survival. These data suggest a detrimental role of chit1 in K. pneumoniae lung infections.


Assuntos
Hexosaminidases/metabolismo , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/fisiologia , Pulmão/imunologia , Macrófagos/fisiologia , Neutrófilos/imunologia , Animais , Extratos Celulares , Modelos Animais de Doenças , Hexosaminidases/genética , Humanos , Pulmão/microbiologia , Camundongos , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...