Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27339048

RESUMO

Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales.

2.
New Phytol ; 207(2): 368-376, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25708902

RESUMO

The rugged topography of the Cape Floristic Region (CFR), South Africa, is frequently invoked to explain the spectacular radiation of the Cape flora, but the mechanisms involved remain unclear. Where recent authors emphasize the importance of elevation gradients as stimuli for ecological speciation, earlier workers stressed the role of topography as an isolating mechanism, particularly in montane lineages. Using six Cape plant lineages, we tested whether elevation niches are phylogenetically conserved. We then assessed whether high-elevation species are more consistently range-restricted than low-elevation species, and whether high-elevation sisters show stronger range exclusivity (allopatry) and weaker ecological and phenotypic differentiation, suggestive of nonecological speciation. Elevation niches tend to be phylogenetically conserved. Also, high-elevation species are more consistently range-restricted than low-elevation species, potentially explaining the generally stronger range exclusivity of high-elevation sisters. While the high-elevation zone is less homogeneous ecologically, more data are required to demonstrate that high-elevation sister species show generally weaker ecological and phenotypic differentiation. Topographic complexity promotes geographical isolation at high elevations, thereby providing opportunities for nonecological, vicariant speciation. While recognizing the need for additional data, we suggest that the upland and lowland floras of the CFR may differ with regard to predominant speciation mode.


Assuntos
Altitude , Biodiversidade , Evolução Biológica , Fenômenos Geológicos , Magnoliopsida/genética , Fenótipo , Filogenia , Adaptação Fisiológica , Clima , Ecologia , Ecossistema , Especiação Genética , África do Sul
3.
Mol Phylogenet Evol ; 77: 96-109, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24704302

RESUMO

Since some speciation mechanisms are more likely to generate morphological disparity than others, the general failure of vascular plant taxonomists to recognize cryptic diversity may bias perceptions about speciation process in plants. While the exceptional floristic richness of the South African Cape has largely been attributed to adaptive divergence ('ecological' speciation), a combination of climatic dynamism and complex topography has likely provided ample opportunities for 'non-ecological' vicariant speciation, a mechanism which is perhaps more likely to produce cryptic species. We explore the role of topography as a driver of 'non-ecological' speciation in the high-elevation sedge Tetraria triangularis. Within this species, molecular and morphological data reveal five cryptic or semi-cryptic lineages of Miocene-Pliocene age which qualify as evolutionary species. At least three of these maintain their distinctness in sites of sympatry, identifying them as biological species. Negligible range overlap, and the identification of topography as a significant predictor of range turnover, identifies speciation as allopatric and a result of impeded gene flow across low-elevation topographic features. Weak morphological and ecological divergence implies a limited role for adaptive divergence in powering speciation, with character displacement in sympatry possibly arising as a consequence of interspecific competition. Although we cannot exclude a role for disruptive selection in species differentiation, we identify isolation of populations on topographically separated mountains as the principal motor of speciation. We suggest that the importance of topography in the genesis of Cape floristic diversity has been inadequately acknowledged.


Assuntos
Cyperaceae/genética , Filogenia , Altitude , Ecossistema , Fluxo Gênico , Haplótipos
4.
Mol Phylogenet Evol ; 72: 61-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24321594

RESUMO

Understanding the ecology and evolution of the hyper-diverse Cape flora is dependent on developing an understanding of its component parts, best epitomized by the Cape floral clades that have diversified and are largely endemic to the region. Here we employ a new dated phylogenetic hypothesis for the sedge genus Tetraria, one of the smaller Cape floral clades, to develop an understanding of timing and rates of diversification in the group. Specifically, we test whether diversification in Tetraria slowed as the number of extant lineages increased, suggesting that available ecological niche space has become increasingly saturated through time. The radiation of Tetraria began approximately 18million years ago, concordant with that of many other Cape clades. Diversification rates in the genus showed no drastic shifts in response to major environmental changes, but declined as lineage diversity accumulated, indicative of ecological limitation on speciation rates. This allows the development of heuristic predictions about the composition of Tetraria assemblages at various spatial scales, and suggests that closely related species should either be ecologically differentiated or have non-overlapping geographic distributions. The question of whether ecological limitation of diversity is a common phenomenon in other Cape lineages has important implications for our understanding of the evolution and ecology of the contemporary Cape flora as a whole.


Assuntos
Cyperaceae/genética , Filogenia , DNA de Plantas/genética , Ecossistema , Marcadores Genéticos , Variação Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...