Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Radiol ; 175: 111434, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520806

RESUMO

PURPOSE: Artificial intelligence and deep learning solutions are increasingly utilized in healthcare and radiology. The number of studies addressing their enhancement of productivity and monetary impact is, however, still limited. Our hospital has faced a need to enhance MRI scanner throughput, and we investigate the utility of new commercial deep learning reconstruction (DLR) algorithm for this purpose. In this work, a multidisciplinary team evaluated the impact of the widespread deployment of a new commercial deep learning reconstruction (DLR) algorithm for our magnetic resonance imaging scanner fleet. METHODS: Our analysis centers on the DLR algorithm's effects on patient throughput and investment costs, contrasting these with alternative strategies for capacity expansion-namely, acquiring additional MRI scanners and increasing device utilization on weekends. We provide a framework for assessing the financial implications of new technologies in a trial phase, aiding in informed decision-making for healthcare investments. RESULTS: We demonstrate substantial reductions in total operating costs compared to other capacity-enhancing methods. Specifically, the cost of adopting the deep learning technology for our entire scanner fleet is only 11 % compared to procuring an additional scanner and 20 % compared to the weekend utilization costs of existing devices. CONCLUSIONS: Procuring DLR for our existing five-scanner fleet allows us to sustain our current MRI service levels without the need for an additional scanner, thereby achieving considerable cost savings. These reductions highlight the efficiency and economic viability of DLR in optimizing MRI service delivery.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/economia , Imageamento por Ressonância Magnética/métodos , Humanos , Algoritmos
2.
Phys Med ; 117: 103184, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016216

RESUMO

PURPOSE: The use of iterative and deep learning reconstruction methods, which would allow effective noise reduction, is limited in cone-beam computed tomography (CBCT). As a consequence, the visibility of soft tissues is limited with CBCT. The study aimed to improve this issue through time-efficient deep learning enhancement (DLE) methods. METHODS: Two DLE networks, UNIT and U-Net, were trained with simulated CBCT data. The performance of the networks was tested with three different test data sets. The quantitative evaluation measured the structural similarity index measure (SSIM) and the peak signal-to-noise ratio (PSNR) of the DLE reconstructions with respect to the ground truth iterative reconstruction method. In the second assessment, a dentomaxillofacial radiologist assessed the resolution of hard tissue structures, visibility of soft tissues, and overall image quality of real patient data using the Likert scale. Finally, the technical image quality was determined using modulation transfer function, noise power spectrum, and noise magnitude analyses. RESULTS: The study demonstrated that deep learning CBCT denoising is feasible and time efficient. The DLE methods, trained with simulated CBCT data, generalized well, and DLE provided quantitatively (SSIM/PSNR) and visually similar noise-reduction as conventional IR, but with faster processing time. The DLE methods improved soft tissue visibility compared to the conventional Feldkamp-Davis-Kress (FDK) algorithm through noise reduction. However, in hard tissue quantification tasks, the radiologist preferred the FDK over the DLE methods. CONCLUSION: Post-reconstruction DLE allowed feasible reconstruction times while yielding improvements in soft tissue visibility in each dataset.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...