Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445228

RESUMO

In the placement of dental implants, the primary fixation between the dental implant and the bone is of great importance and corresponds to compressive mechanical fixation that aims to prevent micromovement of the implant. The aim of this research was to determine the role of roughness and the type of dental implant (tissue-level or bone-level) in implant stability, measured using resonance frequency analysis (RFA) and insertion torque (IT). We analyzed 234 titanium dental implants, placed in fresh calf ribs, at the half-tissue level and half-bone level. The implant surface was subjected to grit-blasting treatments with alumina particles of 120, 300, and 600 µm at a projection pressure of 2.5 bar, resulting in three types of roughness. Roughness was determined via optical interferometry. The wettability of the surfaces was also determined. Implant stability was measured using a high-precision torquemeter to obtain IT, and RFA was used to determine the implant stability quotient (ISQ). The results show that rough surfaces with Sa values of 0.5 to 4 µm do not affect the primary stability. However, the type of implant is important; bone-level implants obtained the highest primary stability values. A good correlation between the primary stability values obtained via IT and ISQ was demonstrated. New in vivo studies are necessary to know whether these results can be maintained in the long term.

2.
J Funct Biomater ; 14(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37367285

RESUMO

Bacterial infections in dental implants generate peri-implantitis disease that causes bone loss and the mobility of the dental implant. It is well known that specific ranges of roughness favor the proliferation of bacteria, and it is for this reason that new dental implants called hybrids have appeared. These implants have a smooth area in the coronal part and a rough surface in the apical part. The objective of this research is the physico-chemical characterization of the surface and the osteoblastic and microbiological behavior. One-hundred and eighty discs of titanium grade 3 with three different surfaces (smooth, smooth-rough, and completely rough) were studied. The roughness was determined by white light interferometry, and the wettability and surface energy by the sessile drop technique and the application of Owens and Wendt equations. Human osteoblast SaOS-2 was cultured to determine cell adhesion, proliferation, and differentiation. Microbiological studies were performed with two common bacterial strains in oral infection, E. faecalis and S. gordonii, at different times of culture. The roughness obtained for the smooth surface was Sa = 0.23 and for the rough surface it was 1.98 µm. The contact angles were more hydrophilic for the smooth surface (61.2°) than for the rough surface (76.1°). However, the surface energy was lower for the rough surface (22.70 mJ/m2) in both its dispersive and polar components than the smooth surface (41.77 mJ/m2). Cellular activity in adhesion, proliferation, and differentiation was much higher on rough surfaces than on smooth surfaces. After 6 h of incubation, the osteoblast number in rough surfaces was more than 32% higher in relation to the smooth surface. The cell area in smooth surfaces was higher than rough surfaces. The proliferation increased and the alkaline phosphatase presented a maximum after 14 days, with the mineral content of the cells being higher in rough surfaces. In addition, the rough surfaces showed greater bacterial proliferation at the times studied and in the two strains used. Hybrid implants sacrifice the good osteoblast behavior of the coronal part of the implant in order to obstruct bacterial adhesion. The following fact should be considered by clinicians: there is a possible loss of bone fixation when preventing peri-implantitis.

3.
Materials (Basel) ; 16(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241275

RESUMO

One of the strategies for the fight against peri-implantitis is the fabrication of titanium dental implants with the part close to the neck without roughness. It is well known that roughness favors osseointegration but hinders the formation of biofilm. Implants with this type of structure are called hybrid dental implants, which sacrifice better coronal osseointegration for a smooth surface that hinders bacterial colonization. In this contribution, we have studied the corrosion resistance and the release of titanium ions to the medium of smooth (L), hybrid (H), and rough (R) dental implants. All implants were identical in design. Roughness was determined with an optical interferometer and residual stresses were determined for each surface by X-ray diffraction using the Bragg-Bentano technique. Corrosion studies were carried out with a Voltalab PGZ301 potentiostat, using Hank's solution as an electrolyte at a temperature of 37 °C. Open-circuit potentials (Eocp), corrosion potential (Ecorr), and current density (icorr) were determined. Implant surfaces were observed by JEOL 5410 scanning electron microscopy. Finally, for each of the different dental implants, the release of ions into Hank's solution at 37 °C at 1, 7, 14, and 30 days of immersion was determined by ICP-MS. The results, as expected, show a higher roughness of R with respect to L and compressive residual stresses of -201.2 MPa and -20.2 MPa, respectively. These differences in residual stresses create a potential difference in the H implant corresponding to Eocp of -186.4 mV higher than for the L and R of -200.9 and -192.2 mV, respectively. The corrosion potentials and current intensity are also higher for the H implants (-223 mV and 0.069 µA/mm2) with respect to the L (-280 mV and 0.014 µA/mm2 and R (-273 mV and 0.019 µA/mm2). Scanning electron microscopy revealed pitting in the interface zone of the H implants and no pitting in the L and R dental implants. The titanium ion release values to the medium are higher in the R implants due to their higher specific surface area compared to the H and L implants. The maximum values obtained are low, not exceeding 6 ppb in 30 days.

4.
J Clin Med ; 12(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769501

RESUMO

The major problems for the osseointegration of dental implants are the loosening of the screw that fixes the dental implant to the abutment and the micromovements that are generated when mechanical loads are applied. In this work, torque differences in the tightening and loosening of the connection screws after 1 cycle, 10 cycles and 1000 cycles for 4 dental implants with 2 external and 2 internal connections were analyzed. The loosening of 240 implants (60 for each system) was determined using high-precision torsimeters and an electromechanical testing machine. A total of 60 dental implants for each of the 4 systems were inserted into fresh bovine bone to determine the micromovements. The implant stability values (ISQ) were determined by RFA. The mechanical loads were performed at 30° from 20 N to 200 N. By means of the Q-star technique, the micromovements were determined. It was observed that, for a few cycles, the loosening of the screw did not exceed a loss of tightening of 10% for both connections. However, for 1000 cycles, the loss for the external connection was around 20% and for the internal connection it was 13%. The micromovements showed a lineal increase with the applied load for the implant systems studied. An external connection presented greater micromotions for each level of applied load and lower ISQ values than internal ones. An excellent lineal correlation between the ISQ and micromobility was observed. These results may be very useful for clinicians in the selection of the type of dental implant, depending on the masticatory load of the patient as well as the consequences of the insertion torque of the dental implant and its revisions.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36833476

RESUMO

Metal ion release studies were carried out on three of the most commonly used orthodontic wires in the clinic: austenitic stainless steel, Ti-Mo, and superelastic NiTi, using three mouthwashes with different fluoride concentrations: 130, 200, and 380 ppm. Immersions were carried out in these mouthwashes at 37 °C for 1, 4, 7, and 14 days, and the ions released were determined by inductively coupled plasma-mass spectrometry (ICP-MS). All wires were observed by scanning electron microscopy (SEM). The results showed a moderate ion release in the stainless steel wires, with nickel and chromium values of 500 and 1000 ppb in the worst conditions for the wires: concentrations of 380 ppm fluoride and 14 days of immersion. However, in the Ti-Mo and NiTi alloys, an abrupt change in release was observed when the samples were immersed in 380 ppm fluoride concentrations. Titanium releases in Ti-Mo wires reached 200,000 ppb, creating numerous pits on the surface. Under the same conditions, the release of Ni and Ti ions from the superelastic wires also exceeded 220,000 ppb and 180,000 ppb, respectively. This release of ions causes variations in the chemical composition of the wires, causing the appearance of martensite plates in the austenitic matrix after 4 days of immersion. This fact causes it to lose its superelastic properties at a temperature of 37 °C. In the case of immersion in 380 ppm mouthwashes for more than 7 days, rich-nickel precipitates can be seen. These embrittle the wire and lose all tooth-correcting properties. It should be noted that the release of Ni ions can cause hypersensitivity in patients, particularly women. The results indicate that the use of mouthwashes with a high content of fluoride should not be recommended with orthodontic archwires.


Assuntos
Fluoretos , Antissépticos Bucais , Feminino , Humanos , Antissépticos Bucais/química , Níquel , Fios Ortodônticos , Aço Inoxidável , Propriedades de Superfície , Titânio/química , Masculino
6.
J Funct Biomater ; 14(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36826866

RESUMO

Digital dentistry and new techniques for the dental protheses' suprastructure fabrication have undergone a great evolution in recent years, revolutionizing the quality of dental prostheses. The aim of this work is to determine whether the best horizontal marginal fit is provided by the CAD-CAM technique or by laser sintering. These values have been compared with the traditional casting technique. A total of 30 CAD-CAM models, 30 laser sintering models, and 10 casting models (as control) were fabricated. The structures realized with chromium-cobalt (CrCo) have been made by six different companies, always with the same model. Scanning electron microscopy with a high-precision image analysis system was used, and 10,000 measurements were taken for each model on the gingival (external) and palatal (internal) side. Thus, a total of 1,400,000 images were measured. It was determined that the CAD-CAM technique is the one that allows the best adjustments in the manufacturing methods studied. The laser sintering technique presents less adjustment, showing the presence of porosities and volume contraction defects due to solidification processes and heterogeneities in the chemical composition (coring). The technique with the worst adjustments is the casting technique, containing numerous defects in the suprastructure. The statistical analysis of results reflected the presence of statistically significant gap differences between the three manufacturing methods analyzed (p < 0.05), with the samples manufactured by CAD-CAM and by traditional casting processes being the ones that showed lower and higher values, respectively. No statistically significant differences in fit were observed between the palatal and gingival fit values, regardless of the manufacturing method used. No statistically significant differences in adjustment between the different manufacturing centers were found, regardless of the process used.

7.
Materials (Basel) ; 15(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36363077

RESUMO

Titanium mini-implants are used as anchorage for orthodontic tooth movements. However, these implants present problems due to the infection of surrounding tissues. The aim of this work was to obtain a polyethylene glycol (PEG) layer by plasma in order to achieve a bacteriostatic surface. Titanium surfaces were activated by argon plasma and, after, by PEG plasma with different powers (100, 150 and 200 W) for 30 and 60 min. The roughness was determined by white light interferometer microscopy and the wettability was determined by the contact angle technique. Surface chemical compositions were characterized by X-ray photoelectron spectroscopy (XPS) and cytocompatibility and cell adhesion studies were performed with fibroblast (hFFs) and osteoblast (SAOS-2) cells. Bacterial cultures with Spectrococcus Sanguinis and Lactobacillus Salivarius were performed, and bacterial colonization was determined. The results showed that plasma treatments do not affect the roughness. Plasma makes the surfaces more hydrophilic by decreasing the contact angles from 64.2° for titanium to 5.2° for argon-activated titanium, with values ranging from 12° to 25° for the different PEG treatments. The plasma has two effects: the cleaning of the surface and the formation of the PEG layer. The biocompatibility results were, for all cases, higher than 80%. The polymerization treatment with PEG reduced the adhesion of hFFs from 7000 to 6000 and, for SAOS-2, from 14,000 to 6500, for pure titanium and those treated with PEG, respectively. Bacterial adhesion was also reduced from 600 to 300 CFU/mm2 for Spetrococcuns Sanguinis and from 10,000 to 900 CFU/mm2 for Lactobacillus Salivarius. The best bacteriostatic treatment corresponded to PEG at 100 W and 30 s. As a consequence, the PEG coating would significantly prevent the formation of bacterial biofilm on the surface of titanium mini-implants.

8.
Materials (Basel) ; 15(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36233934

RESUMO

The influence of sodium fluoride (NaF) concentration in mouthwashes on the properties of superelastic NiTi orthodontic wires has been studied. In this work, 55.8%Ni and 44.2%Ti (in weight) wires were introduced in commercial mouthwashes with different NaF contents (0, 130, 200 and 380 ppm). The release of Ni2+ and Ti4+ ions was by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at 1, 4, 7 and 14 days. Superelastic orthodontic wires present at oral temperature the austenitic phase which is transformed into a plastic phase (martensite) by cooling. The temperatures at which this occurs are influenced by the chemical composition. The release of ions from the wire will produce variations in the temperatures and stresses of the stress-induced martensitic transformation. Ms, Mf, As, Af were determined by Differential Scanning Calorimeter (DSC). The transformation stresses (austenite to stress induce martensite) were determined with a servo-hydraulic testing machine at 37 °C. The surfaces for the different times and mouthwash were observed by Scanning Electron Microscope (SEM). The release of Ni2+ in mouthwashes with 380 ppm NaF concentrations reaches 230,000 ppb in 14 days and for Ti4+ 175,000 ppb. When NaF concentrations are lower than 200 ppm the release of Ni and Ti ions is around 1500 ppb after 14 days. This variation in compositions leads to variations in Ms from 27 °C to 43.5 °C in the case of higher NaF concentration. The increasing immersion time and NaF concentrations produce a decrease of Ni in the wires, increasing Ms which exceed 37 °C with the loss of superelasticity. In the same way, the stresses (tooth position corrective) decrease from 270 MPa to 0 MPa due to the martensitic phase. The degradation can produce the growth of precipitates rich in Ti (Ti2Ni). These results are of great interest in the orthodontic clinic in order to avoid the loss of the therapeutic properties of superelastic NiTi due to long immersion in fluoride mouthwashes.

9.
Materials (Basel) ; 15(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955326

RESUMO

The use of a PMMA composite with graphene is being commercialized for application as dental prostheses. The different proportions of fibers provide a wide range of colors that favors dental esthetics in prostheses. However, there are no studies that have explained the influence that graphene has on the mechanical properties. In this contribution, we studied the PMMA and PMMA material with graphene fibers (PMMA-G) in the form of discs as supplied for machining. The presence of graphene fibers has been studied by Raman spectroscopy and the Shore hardness and Vickers micro hardness were determined. Mechanical compression tests were carried out to obtain the values of maximum strength and Young's modulus (E) and by means of pin-on-disc wear tests, the specific wear rate and the friction coefficients were determined following the established international standards. Finally, the samples were characterized by field emission scanning electron microscopy (FESEM) to characterize the graphene's morphology inside the PMMA. The results showed the presence of graphene in PMMA and was estimated in an amount of 0.1027% by weight in G-PMMA. The Shore hardness and Vickers microhardness values did not show statistically significant differences. Differences were observed in the compression maximum strength (129.43 MPa for PMMA and 140.23 for PMMA-G) and E values (2.01 for PMMA and 2.89 GPa for PMMA-G) as well as in the lower wear rate for the G-PMMA samples (1.93 × 10−7 for PMMA and 1.33 × 10−7 mm3/N·m) with a p < 0.005. The coefficients of friction for PMMA-G decreased from 0.4032 for PMMA to 0.4001 for PMMA-G. From the results obtained, a slight content in graphene produced a significant improvement in the mechanical properties that could be observed in the prosthesis material. Therefore, we can state that the main attraction of this material for dental prosthesis is its esthetics.

10.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806339

RESUMO

The techniques used in oral implantology to remove bacterial biofilm from the surface of implants by machining the titanium surface (implantoplasty) or by placing rough dental implants through friction with the cortical bone generate a large release of particles. In this work, we performed a simulation of particle generation following clinical protocols. The particles were characterized for commercially pure titanium with particle sizes of 5, 10, 15, and 30 µm. The aim was to determine the effect of particle size and chemical composition of the implant on the immune response. For this purpose, their morphology and possible contamination were characterized by scanning electron microscopy and X-ray microanalysis. In addition, the granulometry, specific surface area, release of metal ions into the medium, and studies of cytocompatibility, gene expression, and cytokine release linked to the inflammatory process were studied. The release of ions for titanium particles showed levels below 800 ppb for all sizes. Smaller particle sizes showed less cytotoxicity, although particles of 15 µm presented higher levels of cytocompatibility. In addition, inflammatory markers (TNFα and Il-1ß) were higher compared to larger titanium. Specifically, particles of 15 µm presented a lower proinflammatory and higher anti-inflammatory response as characterized by gene expression and cytokine release, compared to control or smaller particles. Therefore, in general, there is a greater tendency for smaller particles to produce greater toxicity and a greater proinflammatory response.


Assuntos
Implantes Dentários , Titânio , Citocinas , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Propriedades de Superfície , Titânio/análise
11.
Materials (Basel) ; 15(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629663

RESUMO

Many studies are being carried out on the particles released during the implantoplasty process in the machining of dental implants to remove bacterial biofilms. However, there are no studies on the release of particles produced by the insertion of bone-level dental implants due to the high compressive frictional loads between the rough titanium implant and the bone tissue. This paper aims to characterize the released particles and determine the release of titanium ions into the physiological environment and their cytocompatibility. For this purpose, 90 dental implants with a neck diameter of 4 mm and a torque of 22 Ncm were placed in 7 fresh cow ribs. The placement was carried out according to the established protocols. The implants had a roughness Ra of 1.92 µm. The arrangement of the particles in the bone tissue was studied by micro-CT, and no particle clusters were observed. The different granulometries of 5, 15, and 30 µm were obtained; the specific surface area was determined by laser diffraction; the topography was determined by scanning electron microcopy; and the particles were chemically analysed by X-ray energy microanalysis. The residual stresses of the particles were obtained by X-ray diffraction using the Bragg-Bentano configuration. The release of titanium ions to the physiological medium was performed using ICP-MS at 1, 3, 7, 14, and 21 days. The cytocompatibility of the particles with HFF-1 fibroblast and SAOS-2 osteoblast cultures was characterized. The results showed that the lowest specific surface area (0.2109 m2/g) corresponds to the particles larger than 30 µm being higher than 0.4969 and 0.4802 m2/g of those that are 5 and 15 µm, respectively, observing in all cases that the particles have irregular morphologies without contamination of the drills used in the surgery. The highest residual stresses were found for the small particles, -395 MPa for the 5 µm particles, and -369 for the 15 µm particles, and the lowest residual stresses were found for the 30 µm particles with values of -267 MPa. In all cases, the residual stresses were compressive. The lowest ion release was for the 30 µm samples, as they have the lowest specific surface area. Cytocompatibility studies showed that the particles are cytocompatible, but it is the smallest ones that are lower and very close to the 70% survival limit in both fibroblasts and osteoblasts.

12.
J Clin Med ; 11(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35207298

RESUMO

The purpose of this research is to study the biomechanical response of dental implants in bone-level type locations, 0.5 mm above and below the bone level. In addition, the influence of the thickness of the cortical bone on osseointegration is determined due to the mechanical loads transfer from the dental implant to the cortical and trabecular bone. The thicknesses studied were 1.5 mm and 2.5 mm. Numerical simulations were performed using a finite element method (FEM)-based model. In order to verify the FEM model, the in silico results were compared with the results obtained from a histological analysis performed in an in vivo study with 30 New Zealand rabbits. FEM was performed using a computerized 3D model of bone-level dental implants inserted in the lower jawbone with an applied axial load of 100 N. The analysis was performed using different distances from the bone level and different thicknesses of cortical bone. The interface area of bone growth was evaluated by analyzing the bone-implant contact (BIC), region of interest (ROI) and total bone area (BAT) parameters obtained through an in vivo histological process and analyzed by scanning electron microscopy (SEM). Bone-level implants were inserted in the rabbit tibiae, with two implants placed per tibia. These parameters were evaluated after three or six weeks of implantation. FEM studies showed that placements 0.5 mm below the bone level presented lower values of stress distribution compared to the other studied placements. The lower levels of mechanical stress were then correlated with the in vivo studies, showing that this position presented the highest BIC value after three or six weeks of implantation. In this placement, vertical bone growth could be observed up the bone level. The smallest thickness of the study showed a better transfer of mechanical loads, which leads to a better osseointegration. In silico and in vivo results both concluded that the implants placed 0.5 mm below the cortical bone and with lower thicknesses presented the best biomechanical and histological behavior in terms of new bone formation, enhanced mechanical stability and optimum osseointegration.

13.
Materials (Basel) ; 15(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208101

RESUMO

The procedure generally used to remove bacterial biofilm adhering to the surface of titanium on dental implants is implantoplasty. This treatment is based on the machining of the titanium surface to remove bacterial plaque. In this study, we used 60 grade 4 titanium implants and performed the implantoplasty protocol. Using X-ray diffraction, we determined the stresses accumulated in each of the as-received, machined and debris implants. The resistance to corrosion in open circuit and potentiodynamically in physiological medium has been determined, and the corrosion potentials and intensities have been determined. Tests have been carried out to determine ion release by ICP-MS at different immersion times. The results show that the corrosion resistance and the release of titanium ions into the medium are related to the accumulated energy or the degree of deformation. The titanium debris exhibit compressive residual stresses of -202 MPa, the implant treated with implantoplasty -120 MPa, and as-received -77 MPa, with their corrosion behavior resulting in corrosion rates of 0.501, 0.77, and 0.444 mm/year, respectively. Debris is the material with the worst corrosion resistance and the one that releases the most titanium ions to the physiological medium (15.3 ppb after 21 days vs. 7 ppb for as-received samples). Pitting has been observed on the surface of the debris released into the physiological environment. This behavior should be taken into account by clinicians for the good long-term behavior of implants with implantoplasty.

14.
Materials (Basel) ; 12(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934553

RESUMO

The load transfer from metallic prosthesis to tissue plays an important role in the success of a designed device. From a mechanical behavior point of view, the load transfer will be favored when the elastic modulus between the metallic implant and the bone tissue are similar. Titanium and Ti-6Al-4V are the most commonly used metals and alloys in the field of dental implants, although they present high elastic moduli and hence trigger bone resorption. We propose the use of low-modulus ß-type titanium alloys that can improve the growth of new bone surrounding the implant. We designed dental implants with identical morphology and micro-roughness composed of: Ti-15Zr, Ti-19.1Nb-8.8Zr, Ti-41.2Nb-6.1Zr, and Ti-25Hf-25Ta. The commercially pure Ti cp and Ti-6Al-4V were used as control samples. The alloys were initially mechanically characterized with a tensile test using a universal testing machine. The results showed the lowest elastic modulus for the Ti-25Hf-25Ta alloy. We implanted a total of six implants in the mandible (3) and maxilla (3) for each titanium alloy in six minipigs and evaluated their bone index contact (i.e., the percentage of new bone in contact with the metal-BIC%) after 3 and 6 weeks of implantation. The results showed higher BIC% for the dental implants with lowest elastic modulus, showing the importance of decreasing the elastic modulus of alloys for the successful osseointegration of dental implants.

15.
Open Dent J ; 11: 301-311, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28839479

RESUMO

BACKGROUND: For patients whose centric relation (CR) has not been considered at the start and during treatment, the task of achieving an occlusal scheme that works together with the temporomandibular joint, the muscles, and the structures of the stomatognathic apparatus becomes a major concern. OBJECTIVE: This study aims to describe a reproducible, predictable and to date unreported procedure of selective grinding guided by an occlusal splint and to analyze condylar position (CP) based on the skeletal pattern. METHODS: A total of 72 symptomatic patients (38 females and 34 males) were classified into three groups: hyperdivergent, intermediate and hypodivergent. CP was quantified by mounted casts on a measures condyle displacement (MCD) device. Helkimo index was also performed in order to assess the severity of the temporomandibular joint (TMJ) disorders attending to clinical dysfunction, occlusal state and anamnestic dysfunction. Once the stability had been obtained, the splint was progressively reduced until the maximum intercuspation (MIC) was achieved. RESULTS: The vertical displacement was found to be significantly different between the hyperdivergent and other two groups (p<0.01). Comparisons of MCD analysis before and after the selective grinding procedure identified a statistically significant difference in the horizontal and vertical CP (p<0.01) between the different groups whereas the Helkimo Index showed a clear improvement of TMJ disorders. CONCLUSION: All facial types, specially the hyperdivergent face type, showed a reduction in condylar displacement (CD) and less craniomandibular symptoms using this procedure, making it an excellent technique for clinicians.

16.
J Prosthet Dent ; 117(1): 18-21, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27475919

RESUMO

The virtual technique described in this article integrates reverse engineering and mandibular dynamics into dental computer-aided design and computer-aided manufacturing (CAD-CAM) systems. This technique aims to provide more objective information to the dental technician for the diagnosis, planning, and treatment phases. In order to carry out this protocol, the following devices, currently available in many practices, are necessary: an intraoral scanner, a T-Scan system, and some specific open reverse engineering software. By means of a virtual procedure, the T-Scan system detects the occlusal contacts, and the occlusal surfaces are obtained using an intraoral scanner. Once the alignment between the 3-dimensional occlusal surface and the T-Scan registration is carried out, the resulting contacts are projected onto the patient's occlusal surfaces; in this way, occlusal forces are obtained over time. The results obtained with this procedure demonstrate the feasibility of integrating different tools and software and the full integration of this procedure into a dental digital workflow.


Assuntos
Desenho Assistido por Computador , Oclusão Dentária , Planejamento de Prótese Dentária/métodos , Humanos , Reprodutibilidade dos Testes , Software
17.
Biomed Res Int ; 2016: 7173824, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881226

RESUMO

The purpose of this study was to locate the 3D spatial position mandibular cast and determine its occlusal contacts in a novel way by using an intraoral scanner as part of the virtual occlusal record procedure. This study also analyzes the requirements in quantity and dimensions of the intraoral virtual occlusal record. The results showed that the best section combination consists of 2 lateral and frontal sections, the width of this section being that of 2 teeth (24 mm × 15 mm). This study concluded that this procedure was accurate enough to locate the mandibular cast on a virtual articulator. However, at least 2 sections of the virtual occlusal records were necessary, and the best results were obtained when the distance between these sections was maximum.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Mandíbula/patologia , Modelos Dentários , Articuladores Dentários , Oclusão Dentária , Humanos , Interface Usuário-Computador
18.
Eur J Orthod ; 38(4): 379-85, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26293288

RESUMO

BACKGROUND AND OBJECTIVES: Anchorage is one of the most challenging sides in orthodontics. The use of biological modulators that inhibit osteoclasts could be a solution to address these problems and provide new adjunctive approaches. The aim of this study was to assess the effectiveness of recombinant osteoprotegerin fusion protein (OPG-Fc) in orthodontic anchorage. MATERIALS AND METHODS: Two groups of male Sprague-Dawley rats were utilized. The animals in the experimental group received twice-weekly injections with high dose of OPG-Fc (5.0mg/kg) in mesial and distal mucosa of the first molars, and those in the control group received no drugs. Right first maxillary molars were mesialized using a calibrated nickel-titanium spring connected to an anterior mini-screw. Tooth movement was measured by two blinded observers using scanned and magnified stone casts. Receptor activator of nuclear factor κB (RANK), run-related transcription factor 2 (Runx2), type I collagen, vimentin, matrix metalloproteinases 2 and 9, S100 protein and the putative mechanoproteins acid-sensing ion channel (ASIC2) and transient receptor potential vainilloid 4 (TRPV4) were evaluated using immunohistochemistry. RESULTS: OPG-Fc group showed an important decreased in mesial molar movement with only 52%, 31%, and 22% of the total mesial molar movement compared with control group at Days 7, 14, and 21, respectively (P < 0.001). RANK ligand and Runx2 positive cells were severely reduced after OPG-Fc treatment. Periodontal ligament architecture, cell arrangement, and immunohistochemical patter for vimentin, type I collagen and the mechanoproteins TRPV4 and ASIC2 were altered by tooth movement and all these parameters altered by the applied treatment. CONCLUSIONS: OPG-Fc effectively inhibits osteoclastogenesis resulting in improved bone quantity and orthodontic anchorage. Based on present results, OPG-Fc could have clinical utility in preventing undesired tooth movements.


Assuntos
Osteoprotegerina/farmacologia , Mobilidade Dentária/prevenção & controle , Técnicas de Movimentação Dentária/métodos , Animais , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Maxila , Dente Molar/efeitos dos fármacos , Dente Molar/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoprotegerina/administração & dosagem , Ligamento Periodontal/efeitos dos fármacos , Ligante RANK/metabolismo , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Mobilidade Dentária/fisiopatologia
19.
J Prosthet Dent ; 115(1): 52-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26386482

RESUMO

STATEMENT OF PROBLEM: Conventional methods associated with many processes in dentistry are being replaced by methods that use digital technology. One of these processes is the making of occlusal records for the positioning of casts in a virtual articulator. Conventional interocclusal records and the articulator are currently being replaced by the intraoral virtual occlusal record and the virtual articulator. PURPOSE: The purpose of this study was to determine the requirements, quantity, and dimensions of the virtual occlusal record procedure in order to locate the mandibular cast's 3-dimensional (3D) spatial position in reference to its corresponding maxillary cast on a virtual articulator. MATERIAL AND METHODS: For the conventional procedure, 6 sets of casts were located in maximal intercuspal position without any interocclusal record. Then, using articulating paper, the occlusal contacts were determined. Afterward, the occlusal relationships and stone cast were digitized with a 3D scanner. To locate the maxillary cast, the occlusal contacts were compared by taking different sections as the virtual occlusal record. Finally, the optimum dimension of the virtual occlusal record was determined. RESULTS: This study determines the requirements, quantity, and dimensions of the virtual occlusal record using current reverse engineering tools. The combinations of the sections were first determined as follows: 3 sections (2 lateral and 1 frontal) and 2 lateral sections proved to be the most accurate. Then, the predictive values (PV) for dimension determination for the left-right lateral combination were calculated. CONCLUSIONS: The main conclusion of this study was that the combination of left and right lateral occlusal records was the most convenient. Additionally, the minimum optimum dimension for a virtual occlusal record was 12×15 mm.


Assuntos
Processamento de Imagem Assistida por Computador , Registro da Relação Maxilomandibular , Modelos Dentários , Articuladores Dentários , Maxila
20.
J Prosthet Dent ; 114(6): 751-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26372628

RESUMO

This article describes a virtual technique for transferring the location of a digitized cast from the patient to a virtual articulator (virtual facebow transfer). Using a virtual procedure, the maxillary digital cast is transferred to a virtual articulator by means of reverse engineering devices. The following devices necessary to carry out this protocol are available in many contemporary practices: an intraoral scanner, a digital camera, and specific software. Results prove the viability of integrating different tools and software and of completely integrating this procedure into a dental digital workflow.


Assuntos
Articuladores Dentários , Registro da Relação Maxilomandibular , Software , Humanos , Maxila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...