Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 601(24): 5751-5775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988235

RESUMO

The size principle is a key mechanism governing the orderly recruitment of motor units and is believed to be dependent on passive properties of the constituent motoneurons. However, motoneurons are endowed with voltage-sensitive ion channels that create non-linearities in their input-output functions. Here we describe a role for the M-type potassium current, conducted by KCNQ channels, in the control of motoneuron recruitment in mice. Motoneurons were studied with whole-cell patch clamp electrophysiology in transverse spinal slices and identified based on delayed (fast) and immediate (slow) onsets of repetitive firing. M-currents were larger in delayed compared to immediate firing motoneurons, which was not reflected by variations in the presence of Kv7.2 or Kv7.3 subunits. Instead, a more depolarized spike threshold in delayed-firing motoneurons afforded a greater proportion of the total M-current to become activated within the subthreshold voltage range, which translated to a greater influence on their recruitment with little influence on their firing rates. Pharmacological activation of M-currents also influenced motoneuron recruitment at the population level, producing a rightward shift in the recruitment curve of monosynaptic reflexes within isolated mouse spinal cords. These results demonstrate a prominent role for M-type potassium currents in regulating the function of motor units, which occurs primarily through the differential control of motoneuron subtype recruitment. More generally, these findings highlight the importance of active properties mediated by voltage-sensitive ion channels in the differential control of motoneuron recruitment, which is a key mechanism for the gradation of muscle force. KEY POINTS: M-currents exert an inhibitory influence on spinal motor output. This inhibitory influence is exerted by controlling the recruitment, but not the firing rate, of high-threshold fast-like motoneurons, with limited influence on low-threshold slow-like motoneurons. Preferential control of fast motoneurons may be linked to a larger M-current that is activated within the subthreshold voltage range compared to slow motoneurons. Larger M-currents in fast compared to slow motoneurons are not accounted for by differences in Kv7.2 or Kv7.3 channel composition. The orderly recruitment of motoneuron subtypes is shaped by differences in the contribution of voltage-gated ion channels, including KCNQ channels. KCNQ channels may provide a target to dynamically modulate the recruitment gain across the motor pool and readily adjust movement vigour.


Assuntos
Neurônios Motores , Potássio , Humanos , Animais , Camundongos , Potenciais de Ação/fisiologia , Neurônios Motores/fisiologia , Fenômenos Eletrofisiológicos , Canais Iônicos
2.
Front Mol Neurosci ; 16: 1027898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671010

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is characterised by a loss of motor neurons in the brain and spinal cord that is preceded by early-stage changes in synapses that may be associated with TAR-DNA-Binding Protein 43 (TDP-43) pathology. Cellular inclusions of hyperphosphorylated TDP-43 (pTDP-43) are a key hallmark of neurodegenerative diseases such ALS. However, there has been little characterisation of the synaptic expression of TDP-43 inside subpopulations of spinal cord synapses. This study utilises a range of high-resolution and super-resolution microscopy techniques with immunolabelling, as well as an aptamer-based TDP-43 labelling strategy visualised with single-molecule localisation microscopy, to characterise and quantify the presence of pTDP-43 in populations of excitatory synapses near where motor neurons reside in the lateral ventral horn of the mouse lumbar spinal cord. We observe that TDP-43 is expressed in approximately half of spinal cord synapses as nanoscale clusters. Synaptic TDP-43 clusters are found most abundantly at synapses associated with VGLUT1-positive presynaptic terminals, compared to VGLUT2-associated synapses. Our nanoscopy techniques showed no difference in the subsynaptic expression of pTDP-43 in the ALS mouse model, SOD1G93a, compared to healthy controls, despite prominent structural deficits in VGLUT1-associated synapses in SOD1G93a mice. This research characterises the basic synaptic expression of TDP-43 with nanoscale precision and provides a framework with which to investigate the potential relationship between TDP-43 pathology and synaptic pathology in neurodegenerative diseases.

3.
Orthop Rev (Pavia) ; 14(3): 35494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936800

RESUMO

This report describes a case of bilateral acute ankle syndesmosis injuries in a 15-year-old male basketball player. The patient had a background of previous inversion injuries but no symptoms of chronic pain or instability. The case report illustrates the importance of clinical suspicion when evaluating acute syndesmosis injuries in conjunction with radiographic assessments in primary care. This is the first reported case of such injury in bilateral limbs.

4.
Orthop Rev (Pavia) ; 14(4): 35494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769662

RESUMO

This report describes a case of bilateral acute ankle syndesmosis injuries in a 15-year-old male basketball player. The patient had a background of previous inversion injuries but no symptoms of chronic pain or instability. The case report illustrates the importance of clinical suspicion when evaluating acute syndesmosis injuries in conjunction with radiographic assessments in primary care. This is the first reported case of such injury in bilateral limbs.

5.
Acta Neuropathol ; 143(4): 471-486, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35305541

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder. Separate lines of evidence suggest that synapses and astrocytes play a role in the pathological mechanisms underlying ALS. Given that astrocytes make specialised contacts with some synapses, called tripartite synapses, we hypothesise that tripartite synapses could act as the fulcrum of disease in ALS. To test this hypothesis, we have performed an extensive microscopy-based investigation of synapses and tripartite synapses in the spinal cord of ALS model mice and post-mortem human tissue from ALS cases. We reveal widescale synaptic changes at the early symptomatic stages of the SOD1G93a mouse model. Super-resolution microscopy reveals that large complex postsynaptic structures are lost in ALS mice. Most surprisingly, tripartite synapses are selectively lost, while non-tripartite synapses remain in equal number to healthy controls. Finally, we also observe a similar selective loss of tripartite synapses in human post-mortem ALS spinal cords. From these data we conclude that tripartite synaptopathy is a key hallmark of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Medula Espinal/patologia , Superóxido Dismutase , Superóxido Dismutase-1/genética , Sinapses/patologia
7.
Prog Neurobiol ; 202: 102052, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894330

RESUMO

Astrocytes are a functionally diverse form of glial cell involved in various aspects of nervous system infrastructure, from the metabolic and structural support of neurons to direct neuromodulation of synaptic activity. Investigating how astrocytes behave in functionally related circuits may help us understand whether there is any conserved logic to the role of astrocytes within neuronal networks. Astrocytes are implicated as key neuromodulatory cells within neural circuits that control a number of rhythmic behaviours such as breathing, locomotion and circadian sleep-wake cycles. In this review, we examine the evidence that astrocytes are directly involved in the regulation of the neural circuits underlying six different rhythmic behaviours: locomotion, breathing, chewing, gastrointestinal motility, circadian sleep-wake cycles and oscillatory feeding behaviour. We discuss how astrocytes are integrated into the neuronal networks that regulate these behaviours, and identify the potential gliotransmission signalling mechanisms involved. From reviewing the evidence of astrocytic involvement in a range of rhythmic behaviours, we reveal a heterogenous array of gliotransmission mechanisms, which help to regulate neuronal networks. However, we also observe an intriguing thread of commonality, in the form of purinergic gliotransmission, which is frequently utilised to facilitate feedback inhibition within rhythmic networks to constrain a given behaviour within its operational range.


Assuntos
Astrócitos , Neuroglia , Neurônios , Transdução de Sinais
8.
Sci Rep ; 10(1): 8189, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424125

RESUMO

Functionally distinct synapses exhibit diverse and complex organisation at molecular and nanoscale levels. Synaptic diversity may be dependent on developmental stage, anatomical locus and the neural circuit within which synapses reside. Furthermore, astrocytes, which align with pre and post-synaptic structures to form 'tripartite synapses', can modulate neural circuits and impact on synaptic organisation. In this study, we aimed to determine which factors impact the diversity of excitatory synapses throughout the lumbar spinal cord. We used PSD95-eGFP mice, to visualise excitatory postsynaptic densities (PSDs) using high-resolution and super-resolution microscopy. We reveal a detailed and quantitative map of the features of excitatory synapses in the lumbar spinal cord, detailing synaptic diversity that is dependent on developmental stage, anatomical region and whether associated with VGLUT1 or VGLUT2 terminals. We report that PSDs are nanostructurally distinct between spinal laminae and across age groups. PSDs receiving VGLUT1 inputs also show enhanced nanostructural complexity compared with those receiving VGLUT2 inputs, suggesting pathway-specific diversity. Finally, we show that PSDs exhibit greater nanostructural complexity when part of tripartite synapses, and we provide evidence that astrocytic activation enhances PSD95 expression. Taken together, these results provide novel insights into the regulation and diversification of synapses across functionally distinct spinal regions and advance our general understanding of the 'rules' governing synaptic nanostructural organisation.


Assuntos
Medula Espinal/citologia , Sinapses/metabolismo , Animais , Astrócitos/citologia , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia , Razão Sinal-Ruído , Medula Espinal/diagnóstico por imagem
9.
Front Cell Neurosci ; 14: 30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180706

RESUMO

Evidence suggests that astrocytes are not merely supportive cells in the nervous system but may actively participate in the control of neural circuits underlying cognition and behavior. In this study, we examined the role of astrocytes within the motor circuitry of the mammalian spinal cord. Pharmacogenetic manipulation of astrocytic activity in isolated spinal cord preparations obtained from neonatal mice revealed astrocyte-derived, adenosinergic modulation of the frequency of rhythmic output generated by the locomotor central pattern generator (CPG) network. Live Ca2+ imaging demonstrated increased activity in astrocytes during locomotor-related output and in response to the direct stimulation of spinal neurons. Finally, astrocytes were found to respond to neuronally-derived glutamate in a metabotropic glutamate receptor 5 (mGluR5) dependent manner, which in turn drives astrocytic modulation of the locomotor network. Our work identifies bi-directional signaling mechanisms between neurons and astrocytes underlying modulatory feedback control of motor circuits, which may act to constrain network output within optimal ranges for movement.

10.
Elife ; 92020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081133

RESUMO

Spinal motor networks are formed by diverse populations of interneurons that set the strength and rhythmicity of behaviors such as locomotion. A small cluster of cholinergic interneurons, expressing the transcription factor Pitx2, modulates the intensity of muscle activation via 'C-bouton' inputs to motoneurons. However, the synaptic mechanisms underlying this neuromodulation remain unclear. Here, we confirm in mice that Pitx2+ interneurons are active during fictive locomotion and that their chemogenetic inhibition reduces the amplitude of motor output. Furthermore, after genetic ablation of cholinergic Pitx2+ interneurons, M2 receptor-dependent regulation of the intensity of locomotor output is lost. Conversely, chemogenetic stimulation of Pitx2+ interneurons leads to activation of M2 receptors on motoneurons, regulation of Kv2.1 channels and greater motoneuron output due to an increase in the inter-spike afterhyperpolarization and a reduction in spike half-width. Our findings elucidate synaptic mechanisms by which cholinergic spinal interneurons modulate the final common pathway for motor output.


Assuntos
Neurônios Colinérgicos/fisiologia , Interneurônios/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Sinapses/fisiologia , Animais , Feminino , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio Shab/metabolismo , Canais de Potássio Shab/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Proteína Homeobox PITX2
11.
Front Surg ; 6: 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214596

RESUMO

Background: The population of many countries is aging and a significant number of elderly patients with soft-tissue sarcoma are being seen at cancer centers. The unique therapeutic and prognostic implications of treating soft-tissue sarcoma in geriatric patients warrant further consideration in order to optimize outcomes. Patients and Methods: This is a single-institution retrospective study of consecutive non-metastatic primary extremity and trunk high-grade sarcomas surgically treated between 1996 and 2012, with at least 2 years of follow-up for survivors. Patient characteristics and oncological outcomes were compared between age groups (≥80 vs. <80 years), using Chi-square or Fisher-exact test and Log-Rank or Wilcoxon test, respectively. Deaths from other causes were censored for disease-specific survival estimation. A p< 0.05 was regarded as statistically significant. Results: A total of 333 cases were eligible for this study. Thirty-six patients (11%) were aged ≥80 years. Unplanned surgery incidence and surgical margin status were comparable between the age groups. Five-year local-recurrence-free, metastasis-free and disease-specific survivals were 72% (≥80 years) vs. 90% (<80 years) (p = 0.004), 59 vs. 70% (p = 0.07) and 55 vs. 80% (p < 0.001), respectively. A significantly earlier first metastasis after surgery (8.3 months vs. 20.5 months, mean) and poorer survival after first metastasis (p = 0.03) were observed. Cox analysis revealed "age ≥80 years" as an independent risk factor for local failure and disease-specific mortality, with hazard ratios of 2.41 (95% CI: 1.09-5.32) and 2.52 (1.33-4.13), respectively. A competing risks analysis also showed that "age ≥80 years" was significantly associated with the disease-specific mortality. Conclusions: Oncological outcomes were significantly worse in high-grade sarcoma patients aged ≥80 years. The findings of more frequent local failure regardless of a consistent primary treatment strategy, an earlier time to first metastasis after surgery, and poorer prognosis after first metastasis suggest that more aggressive tumor biology, in addition to multiple co-morbidity, may explain the inferiority.

12.
J Neurophysiol ; 120(3): 998-1009, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790837

RESUMO

Astrocytes modulate many neuronal networks, including spinal networks responsible for the generation of locomotor behavior. Astrocytic modulation of spinal motor circuits involves release of ATP from astrocytes, hydrolysis of ATP to adenosine, and subsequent activation of neuronal A1 adenosine receptors (A1Rs). The net effect of this pathway is a reduction in the frequency of locomotor-related activity. Recently, it was proposed that A1Rs modulate burst frequency by blocking the D1-like dopamine receptor (D1LR) signaling pathway; however, adenosine also modulates ventral horn circuits by dopamine-independent pathways. Here, we demonstrate that adenosine produced upon astrocytic stimulation modulates locomotor-related activity by counteracting the excitatory effects of D1LR signaling and does not act by previously described dopamine-independent pathways. In spinal cord preparations from postnatal mice, a D1LR agonist, SKF 38393, increased the frequency of locomotor-related bursting induced by 5-hydroxytryptamine and N-methyl-d-aspartate. Bath-applied adenosine reduced burst frequency only in the presence of SKF 38393, as did adenosine produced after activation of protease-activated receptor-1 to stimulate astrocytes. Furthermore, the A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine enhanced burst frequency only in the presence of SKF 38393, indicating that endogenous adenosine produced by astrocytes during network activity also acts by modulating D1LR signaling. Finally, modulation of bursting by adenosine released upon stimulation of astrocytes was blocked by protein kinase inhibitor-(14-22) amide, a protein kinase A (PKA) inhibitor, consistent with A1R-mediated antagonism of the D1LR/adenylyl cyclase/PKA pathway. Together, these findings support a novel, astrocytic mechanism of metamodulation within the mammalian spinal cord, highlighting the complexity of the molecular interactions that specify motor output. NEW & NOTEWORTHY Astrocytes within the spinal cord produce adenosine during ongoing locomotor-related activity or when experimentally stimulated. Here, we show that adenosine derived from astrocytes acts at A1 receptors to inhibit a pathway by which D1-like receptors enhance the frequency of locomotor-related bursting. These data support a novel form of metamodulation within the mammalian spinal cord, enhancing our understanding of neuron-astrocyte interactions and their importance in shaping network activity.


Assuntos
Adenosina/metabolismo , Astrócitos/metabolismo , Neurotransmissores/metabolismo , Receptores de Dopamina D1/metabolismo , Medula Espinal/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Adenilil Ciclases/metabolismo , Análise de Variância , Animais , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas de Dopamina/farmacologia , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptores de Dopamina D1/agonistas , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/citologia , Xantinas/farmacologia
14.
Int J Mol Sci ; 18(3)2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28272352

RESUMO

Trauma may cause irreversible tissue damage and loss of function despite current best practice. Healing is dependent both on the nature of the injury and the intrinsic biological capacity of those tissues for healing. Preclinical research has highlighted stem cell therapy as a potential avenue for improving outcomes for injuries with poor healing capacity. Additionally, trauma activates the immune system and alters stem cell behaviour. This paper reviews the current literature on stem cells and its relevance to trauma care. Emphasis is placed on understanding how stem cells respond to trauma and pertinent mechanisms that can be utilised to promote tissue healing. Research involving notable difficulties in trauma care such as fracture non-union, cartilage damage and trauma induced inflammation is discussed further.


Assuntos
Células-Tronco/citologia , Células-Tronco/fisiologia , Cicatrização/fisiologia , Ferimentos e Lesões/etiologia , Animais , Diferenciação Celular , Humanos , Inflamação/etiologia , Insuficiência de Múltiplos Órgãos/etiologia , Músculos/patologia , Músculos/fisiologia , Neovascularização Fisiológica , Regeneração , Pesquisa com Células-Tronco , Ferimentos e Lesões/patologia , Ferimentos e Lesões/terapia
15.
Orthop Rev (Pavia) ; 9(1): 6989, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28286624

RESUMO

Hamstring tendon autografts are used for reconstruction of the anterior cruciate ligament. This study tested the hypothesis that a 5-strand hamstring autograft construct is superior in strength to a 4-strand construct. Four-strand and 5-strand tendon grafts constructs were prepared from ovine flexor tendons and then tested in a uniaxial electromechanical load system with suspensory fixation. The 4-strand and 5-strand constructs were pre-conditioned, stress-relaxed and loaded to ultimate failure. Stress-relaxation, stiffness and ultimate load were compared using a one-way ANOVA. There were no statistical differences in stress-relaxation, initial stiffness, secondary stiffness or ultimate load between 4-strand and 5-strand split tendon graft constructs. Inconsistent failure patterns for both 4-strand and 5-strand constructs were observed. The additional strand in the 5-strand construct may be shielded from stress with additional weakness secondary to the use of suspensory fixation. The potential biological benefit of religamentization and bony integration, with more autologous tissue in the intra-articular space and bony tunnels remains unknown.

16.
J Neurosci ; 37(4): 906-921, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123025

RESUMO

Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more "natural" locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance. SIGNIFICANCE STATEMENT: The sodium pump is ubiquitously expressed and responsible for at least half of total brain energy consumption. The pumps maintain ionic gradients and the resting membrane potential of neurons, but increasing evidence suggests that activity- and state-dependent changes in pump activity also influence neuronal firing. Here we demonstrate that changes in sodium pump activity regulate locomotor output in the spinal cord of neonatal mice. We describe a sodium pump-mediated afterhyperpolarization in spinal neurons, mediated by spike-dependent increases in pump activity, which is affected by dopamine. Understanding how sodium pumps contribute to network regulation and are targeted by neuromodulators, including dopamine, has clinical relevance due to the role of the sodium pump in diseases, including amyotrophic lateral sclerosis, parkinsonism, epilepsy, and hemiplegic migraine.


Assuntos
Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/fisiologia , Medula Espinal/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Inibidores Enzimáticos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ouabaína/farmacologia , Medula Espinal/efeitos dos fármacos
18.
Sci Rep ; 6: 24626, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109929

RESUMO

The molecular features of synapses in the hippocampus underpin current models of learning and cognition. Although synapse ultra-structural diversity has been described in the canonical hippocampal circuitry, our knowledge of sub-synaptic organisation of synaptic molecules remains largely unknown. To address this, mice were engineered to express Post Synaptic Density 95 protein (PSD95) fused to either eGFP or mEos2 and imaged with two orthogonal super-resolution methods: gated stimulated emission depletion (g-STED) microscopy and photoactivated localisation microscopy (PALM). Large-scale analysis of ~100,000 synapses in 7 hippocampal sub-regions revealed they comprised discrete PSD95 nanoclusters that were spatially organised into single and multi-nanocluster PSDs. Synapses in different sub-regions, cell-types and locations along the dendritic tree of CA1 pyramidal neurons, showed diversity characterised by the number of nanoclusters per synapse. Multi-nanocluster synapses were frequently found in the CA3 and dentate gyrus sub-regions, corresponding to large thorny excrescence synapses. Although the structure of individual nanoclusters remained relatively conserved across all sub-regions, PSD95 packing into nanoclusters also varied between sub-regions determined from nanocluster fluorescence intensity. These data identify PSD95 nanoclusters as a basic structural unit, or building block, of excitatory synapses and their number characterizes synapse size and structural diversity.


Assuntos
Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapses Elétricas/metabolismo , Hipocampo/fisiologia , Multimerização Proteica , Células Piramidais/fisiologia , Animais , Proteína 4 Homóloga a Disks-Large/química , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia , Nanoestruturas/química , Transmissão Sináptica
20.
Front Surg ; 2: 36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284252

RESUMO

INTRODUCTION: Reliable animal models are required to evaluate novel treatments for osteosarcoma. In this study, the aim was to implement advanced imaging techniques in a murine model of orthotopic osteosarcoma to improve disease modeling and the assessment of primary and metastatic disease. MATERIALS AND METHODS: Intra-tibial injection of luciferase-tagged OPGR80 murine osteosarcoma cells was performed in Balb/c nude mice. Treatment agent [pigment epithelium-derived factor (PEDF)] was delivered to the peritoneal cavity. Primary tumors and metastases were evaluated by in vivo bioluminescent assays, micro-computed tomography, [(18)F]-Fluoride-PET and [(18)F]-FDG-PET. RESULTS: [(18)F]-Fluoride-PET was more sensitive than [(18)F]-FDG-PET for detecting early disease. Both [(18)F]-Fluoride-PET and [(18)F]-FDG-PET showed progressive disease in the model, with fourfold and twofold increases in standardized uptake value (p < 0.05) by the study endpoint, respectively. In vivo bioluminescent assay showed that systemically delivered PEDF inhibited growth of primary osteosarcoma. DISCUSSION: Application of [(18)F]-Fluoride-PET and [(18)F]-FDG-PET to an established murine model of orthotopic osteosarcoma has improved the assessment of disease. The use of targeted imaging should prove beneficial for the evaluation of new approaches to osteosarcoma therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...