Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 42(2): 112136, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807145

RESUMO

How do patterns of neural activity in the motor cortex contribute to the planning of a movement? A recent theory developed for single movements proposes that the motor cortex acts as a dynamical system whose initial state is optimized during the preparatory phase of the movement. This theory makes important yet untested predictions about preparatory dynamics in more complex behavioral settings. Here, we analyze preparatory activity in non-human primates planning not one but two movements simultaneously. As predicted by the theory, we find that parallel planning is achieved by adjusting preparatory activity within an optimal subspace to an intermediate state reflecting a trade-off between the two movements. The theory quantitatively accounts for the relationship between this intermediate state and fluctuations in the animals' behavior down at the trial level. These results uncover a simple mechanism for planning multiple movements in parallel and further point to motor planning as a controlled dynamical process.


Assuntos
Córtex Motor , Neurônios , Animais , Movimento , Comportamento Animal , Desempenho Psicomotor
3.
Elife ; 112022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35049496

RESUMO

Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity is often confined to relatively low-dimensional manifolds. This implies strong coordination also among neurons that are most likely not even connected. Here, we combine in vivo recordings with network models and theory to characterize the nature of mesoscopic coordination patterns in macaque motor cortex and to expose their origin: We find that heterogeneity in local connectivity supports network states with complex long-range cooperation between neurons that arises from multi-synaptic, short-range connections. Our theory explains the experimentally observed spatial organization of covariances in resting state recordings as well as the behaviorally related modulation of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity in local cortical circuits suggests that the brain uses the described mechanism to flexibly adapt neuronal coordination to momentary demands.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Córtex Motor , Rede Nervosa , Neurônios , Animais , Eletrofisiologia , Feminino , Macaca mulatta , Masculino , Córtex Motor/citologia , Córtex Motor/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/citologia , Neurônios/fisiologia
4.
Cereb Cortex Commun ; 2(3): tgab033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34296183

RESUMO

Resting state has been established as a classical paradigm of brain activity studies, mostly based on large-scale measurements such as functional magnetic resonance imaging or magneto- and electroencephalography. This term typically refers to a behavioral state characterized by the absence of any task or stimuli. The corresponding neuronal activity is often called idle or ongoing. Numerous modeling studies on spiking neural networks claim to mimic such idle states, but compare their results with task- or stimulus-driven experiments, or to results from experiments with anesthetized subjects. Both approaches might lead to misleading conclusions. To provide a proper basis for comparing physiological and simulated network dynamics, we characterize simultaneously recorded single neurons' spiking activity in monkey motor cortex at rest and show the differences from spontaneous and task- or stimulus-induced movement conditions. We also distinguish between rest with open eyes and sleepy rest with eyes closed. The resting state with open eyes shows a significantly higher dimensionality, reduced firing rates, and less balance between population level excitation and inhibition than behavior-related states.

5.
J Bacteriol ; 202(17)2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32571969

RESUMO

In the model organism Caulobacter crescentus, a network of two-component systems involving the response regulators CtrA, DivK, and PleD coordinates cell cycle progression with differentiation. Active phosphorylated CtrA prevents chromosome replication in G1 cells while simultaneously regulating expression of genes required for morphogenesis and development. At the G1-S transition, phosphorylated DivK (DivK∼P) and PleD (PleD∼P) accumulate to indirectly inactivate CtrA, which triggers DNA replication initiation and concomitant cellular differentiation. The phosphatase PleC plays a pivotal role in this developmental program by keeping DivK and PleD phosphorylation levels low during G1, thereby preventing premature CtrA inactivation. Here, we describe CckN as a second phosphatase akin to PleC that dephosphorylates DivK∼P and PleD∼P in G1 cells. However, in contrast to PleC, no kinase activity was detected with CckN. The effects of CckN inactivation are largely masked by PleC but become evident when PleC and DivJ, the major kinase for DivK and PleD, are absent. Accordingly, mild overexpression of cckN restores most phenotypic defects of a pleC null mutant. We also show that CckN and PleC are proteolytically degraded in a ClpXP-dependent way before the onset of the S phase. Surprisingly, known ClpX adaptors are dispensable for PleC and CckN proteolysis, raising the possibility that as yet unidentified proteolytic adaptors are required for the degradation of both phosphatases. Since cckN expression is induced in stationary phase, depending on the stress alarmone (p)ppGpp, we propose that CckN acts as an auxiliary factor responding to environmental stimuli to modulate CtrA activity under suboptimal conditions.IMPORTANCE Two-component signal transduction systems are widely used by bacteria to adequately respond to environmental changes by adjusting cellular parameters, including the cell cycle. In Caulobacter crescentus, PleC acts as a phosphatase that indirectly protects the response regulator CtrA from premature inactivation during the G1 phase of the cell cycle. Here, we provide genetic and biochemical evidence that PleC is seconded by another phosphatase, CckN. The activity of PleC and CckN phosphatases is restricted to the G1 phase since both proteins are degraded by ClpXP protease before the G1-S transition. Degradation is independent of any known proteolytic adaptors and relies, in the case of CckN, on an unsuspected N-terminal degron. Our work illustrates a typical example of redundant functions between two-component proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Bactérias/genética , Ciclo Celular , Monoéster Fosfórico Hidrolases/genética
6.
Cereb Cortex Commun ; 1(1): tgaa017, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34296095

RESUMO

The properties of motor cortical local field potential (LFP) beta oscillations have been extensively studied. Their relationship to the local neuronal spiking activity was also addressed. Yet, whether there is an intrinsic relationship between the amplitude of beta oscillations and the firing rate of individual neurons remains controversial. Some studies suggest a mapping of spike rate onto beta amplitude, while others find no systematic relationship. To help resolve this controversy, we quantified in macaque motor cortex the correlation between beta amplitude and neuronal spike count during visuomotor behavior. First, in an analysis termed "task-related correlation", single-trial data obtained across all trial epochs were included. These correlations were significant in up to 32% of cases and often strong. However, a trial-shuffling control analysis recombining beta amplitudes and spike counts from different trials revealed these task-related correlations to reflect systematic, yet independent, modulations of the 2 signals with the task. Second, in an analysis termed "trial-by-trial correlation", only data from fixed trial epochs were included, and correlations were calculated across trials. Trial-by-trial correlations were weak and rarely significant. We conclude that there is no intrinsic relationship between the firing rate of individual neurons and LFP beta oscillation amplitude in macaque motor cortex.

7.
Sci Adv ; 5(6): eaav0184, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31223645

RESUMO

Nutrient availability has a profound impact on cell fate. Upon nitrogen starvation, wild-type fission yeast cells uncouple cell growth from cell division to generate small, round-shaped cells that are competent for sexual differentiation. The TORC1 (TOR complex 1) and TORC2 complexes exert opposite controls on cell growth and cell differentiation, but little is known about how their activity is coordinated. We show that transfer RNA (tRNA) modifications by Elongator are critical for this regulation by promoting the translation of both key components of TORC2 and repressors of TORC1. We further identified the TORC2 pathway as an activator of Elongator by down-regulating a Gsk3 (glycogen synthase kinase 3)-dependent inhibitory phosphorylation of Elongator. Therefore, a feedback control is operating between TOR complex (TORC) signaling and tRNA modification by Elongator to enforce the advancement of mitosis that precedes cell differentiation.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Nutrientes/genética , Elongação Traducional da Cadeia Peptídica/genética , RNA de Transferência/genética , Schizosaccharomyces/genética , Transdução de Sinais/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação Fúngica da Expressão Gênica/genética , Quinase 3 da Glicogênio Sintase/genética , Mitose/genética , Fosforilação/genética
8.
Neuron ; 100(1): 61-74.e2, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30269990

RESUMO

Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets.


Assuntos
Encéfalo , Conjuntos de Dados como Assunto , Neuroimagem , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Disseminação de Informação/métodos , Imageamento por Ressonância Magnética , Primatas
9.
Front Neural Circuits ; 12: 52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050415

RESUMO

Variability of spiking activity is ubiquitous throughout the brain but little is known about its contextual dependance. Trial-to-trial spike count variability, estimated by the Fano Factor (FF), and within-trial spike time irregularity, quantified by the coefficient of variation (CV), reflect variability on long and short time scales, respectively. We co-analyzed FF and the local coefficient of variation (CV2) in monkey motor cortex comparing two behavioral contexts, movement preparation (wait) and execution (movement). We find that the FF significantly decreases from wait to movement, while the CV2 increases. The more regular firing (expressed by a low CV2) during wait is related to an increased power of local field potential (LFP) beta oscillations and phase locking of spikes to these oscillations. In renewal processes, a widely used model for spiking activity under stationary input conditions, both measures are related as FF ≈ CV2. This expectation was met during movement, but not during wait where FF ≫ CV22. Our interpretation is that during movement preparation, ongoing brain processes result in changing network states and thus in high trial-to-trial variability (expressed by a high FF). During movement execution, the network is recruited for performing the stereotyped motor task, resulting in reliable single neuron output. Our interpretation is in the light of recent computational models that generate non-stationary network conditions.


Assuntos
Potenciais de Ação/fisiologia , Comportamento Animal/fisiologia , Eletrocorticografia/métodos , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Feminino , Macaca mulatta , Masculino
10.
J Neurophysiol ; 120(2): 539-552, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718806

RESUMO

Large-scale network dynamics in multiple visuomotor areas is of great interest in the study of eye-hand coordination in both human and monkey. To explore this, it is essential to develop a setup that allows for precise tracking of eye and hand movements. It is desirable that it is able to generate mechanical or visual perturbations of hand trajectories so that eye-hand coordination can be studied in a variety of conditions. There are simple solutions that satisfy these requirements for hand movements performed in the horizontal plane while visual stimuli and hand feedback are presented in the vertical plane. However, this spatial dissociation requires cognitive rules for eye-hand coordination different from eye-hand movements performed in the same space, as is the case in most natural conditions. Here we present an innovative solution for the precise tracking of eye and hand movements in a single reference frame. Importantly, our solution allows behavioral explorations under normal and perturbed conditions in both humans and monkeys. It is based on the integration of two noninvasive commercially available systems to achieve online control and synchronous recording of eye (EyeLink) and hand (KINARM) positions during interactive visuomotor tasks. We also present an eye calibration method compatible with different eye trackers that compensates for nonlinearities caused by the system's geometry. Our setup monitors the two effectors in real time with high spatial and temporal resolution and simultaneously outputs behavioral and neuronal data to an external data acquisition system using a common data format. NEW & NOTEWORTHY We developed a new setup for studying eye-hand coordination in humans and monkeys that monitors the two effectors in real time in a common reference frame. Our eye calibration method allows us to track gaze positions relative to visual stimuli presented in the horizontal workspace of the hand movements. This method compensates for nonlinearities caused by the system's geometry and transforms kinematics signals from the eye tracker into the same coordinate system as hand and targets.


Assuntos
Eletroencefalografia/instrumentação , Medições dos Movimentos Oculares/instrumentação , Movimentos Oculares , Mãos/fisiologia , Desempenho Psicomotor , Animais , Fenômenos Biomecânicos , Calibragem , Feminino , Humanos , Macaca mulatta , Software
11.
Sci Data ; 5: 180055, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29633986

RESUMO

We publish two electrophysiological datasets recorded in motor cortex of two macaque monkeys during an instructed delayed reach-to-grasp task, using chronically implanted 10-by-10 Utah electrode arrays. We provide a) raw neural signals (sampled at 30 kHz), b) time stamps and spike waveforms of offline sorted single and multi units (93/49 and 156/19 SUA/MUA for the two monkeys, respectively), c) trial events and the monkey's behavior, and d) extensive metadata hierarchically structured via the odML metadata framework (including quality assessment post-processing steps, such as trial rejections). The dataset of one monkey contains a simultaneously saved record of the local field potential (LFP) sampled at 1 kHz. To load the datasets in Python, we provide code based on the Neo data framework that produces a data structure which is annotated with relevant metadata. We complement this loading routine with an example code demonstrating how to access the data objects (e.g., raw signals) contained in such structures. For Matlab users, we provide the annotated data structures as mat files.


Assuntos
Macaca , Córtex Motor/fisiologia , Movimento/fisiologia , Animais
12.
Sci Rep ; 8(1): 5200, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581430

RESUMO

Beta oscillations observed in motor cortical local field potentials (LFPs) recorded on separate electrodes of a multi-electrode array have been shown to exhibit non-zero phase shifts that organize into planar waves. Here, we generalize this concept to additional classes of salient patterns that fully describe the spatial organization of beta oscillations. During a delayed reach-to-grasp task we distinguish planar, synchronized, random, circular, and radial phase patterns in monkey primary motor and dorsal premotor cortices. We observe that patterns correlate with the beta amplitude (envelope): Coherent planar/radial wave propagation accelerates with growing amplitude, and synchronized patterns are observed at largest amplitudes. In contrast, incoherent random or circular patterns are observed almost exclusively when beta is strongly attenuated. The occurrence probability of a particular pattern modulates with behavioral epochs in the same way as beta amplitude: Coherent patterns are more present during movement preparation where amplitudes are large, while incoherent phase patterns are dominant during movement execution where amplitudes are small. Thus, we uncover a trigonal link between the spatial arrangement of beta phases, beta amplitude, and behavior. Together with previous findings, we discuss predictions on the spatio-temporal organization of precisely coordinated spiking on the mesoscopic scale as a function of beta power.


Assuntos
Potenciais de Ação/fisiologia , Força da Mão/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Mapeamento Encefálico , Potenciais Evocados/fisiologia , Humanos , Macaca mulatta/fisiologia , Masculino , Movimento/fisiologia
13.
Front Neural Circuits ; 10: 104, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018182

RESUMO

Anatomical studies have demonstrated that distant cortical points are interconnected through long range axon collaterals of pyramidal cells. However, the functional properties of these intrinsic synaptic connections, especially their relationship with the cortical representations of body movements, have not been systematically investigated. To address this issue, we used multielectrode arrays chronically implanted in the motor cortex of two rhesus monkeys to analyze the effects of single-pulse intracortical microstimulation (sICMS) applied at one electrode on the neuronal activities recorded at all other electrodes. The temporal and spatial distribution of the evoked responses of single and multiunit activities was quantified to determine the properties of horizontal propagation. The typical responses were characterized by a brief excitatory peak followed by inhibition of longer duration. Significant excitatory responses to sICMS could be evoked up to 4 mm away from the stimulation site, but the strength of the response decreased exponentially and its latency increased linearly with the distance. We then quantified the direction and strength of the propagation in relation to the somatotopic organization of the motor cortex. We observed that following sICMS the propagation of neural activity is mainly directed rostro-caudally near the central sulcus but follows medio-lateral direction at the most anterior electrodes. The fact that these interactions are not entirely symmetrical may characterize a critical functional property of the motor cortex for the control of upper limb movements. Overall, these results support the assumption that the motor cortex is not functionally homogeneous but forms a complex network of interacting subregions.


Assuntos
Mapeamento Encefálico/métodos , Estimulação Elétrica/métodos , Fenômenos Eletrofisiológicos/fisiologia , Córtex Motor/fisiologia , Extremidade Superior/fisiologia , Animais , Eletrodos Implantados , Feminino , Macaca mulatta , Masculino
14.
J Neurosci ; 36(32): 8329-40, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27511007

RESUMO

UNLABELLED: The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT: Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex.


Assuntos
Potenciais de Ação/fisiologia , Força da Mão/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Amplitude de Movimento Articular/fisiologia , Animais , Condicionamento Operante , Eletrofisiologia , Feminino , Macaca mulatta , Masculino , Modelos Neurológicos , Tempo de Reação/fisiologia , Vibrissas/inervação
15.
Front Neuroinform ; 10: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486397

RESUMO

To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework.

16.
J Neurosci ; 36(21): 5736-47, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225764

RESUMO

UNLABELLED: The architectonic subdivisions of the brain are believed to be functional modules, each processing parts of global functions. Previously, we showed that neurons in different regions operate in different firing regimes in monkeys. It is possible that firing regimes reflect differences in underlying information processing, and consequently the firing regimes in homologous regions across animal species might be similar. We analyzed neuronal spike trains recorded from behaving mice, rats, cats, and monkeys. The firing regularity differed systematically, with differences across regions in one species being greater than the differences in similar areas across species. Neuronal firing was consistently most regular in motor areas, nearly random in visual and prefrontal/medial prefrontal cortical areas, and bursting in the hippocampus in all animals examined. This suggests that firing regularity (or irregularity) plays a key role in neural computation in each functional subdivision, depending on the types of information being carried. SIGNIFICANCE STATEMENT: By analyzing neuronal spike trains recorded from mice, rats, cats, and monkeys, we found that different brain regions have intrinsically different firing regimes that are more similar in homologous areas across species than across areas in one species. Because different regions in the brain are specialized for different functions, the present finding suggests that the different activity regimes of neurons are important for supporting different functions, so that appropriate neuronal codes can be used for different modalities.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Gatos , Simulação por Computador , Feminino , Haplorrinos , Masculino , Camundongos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie
17.
Hum Brain Mapp ; 36(11): 4262-71, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26248663

RESUMO

The parietal operculum (OP) contains haptic memory on the geometry of objects that is readily transferrable to the motor cortex but a causal role of OP in memory-guided grasping is only speculative. We explored this issue by using online high-frequency repetitive transcranial magnetic stimulation (rTMS). The experimental task was performed by blindfolded participants acting on objects of variable size. Trials consisted in three phases: haptic exploration of an object, delay, and reach-grasp movement onto the explored object. Motor performance was evaluated by the kinematics of finger aperture. Online rTMS was applied to the left OP region separately in each of the three phases of the task. The results showed that rTMS altered grip aperture only when applied in the delay phase to the OP. In a second experiment a haptic discriminative (match-to-sample) task was carried out on objects similar to those used in the first experiment. Online rTMS was applied to the left OP. No psychophysical effects were induced by rTMS on the detection of explicit haptic object size. We conclude that neural activity in the OP region is necessary for proficient memory-guided haptic grasping. The function of OP seems to be critical while maintaining the haptic memory trace and less so while encoding it or retrieving it.


Assuntos
Memória/fisiologia , Atividade Motora/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Percepção de Tamanho/fisiologia , Percepção do Tato/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana , Adulto Jovem
18.
Front Hum Neurosci ; 9: 358, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26150780

RESUMO

Simple and unambiguous visual cues (e.g., an arrow) can be used to trigger covert shifts of visual attention away from the center of gaze. The processing of visual stimuli is enhanced at the attended location. Covert shifts of attention modulate the power of cerebral oscillations in the alpha band over parietal and occipital regions. These modulations are sufficiently robust to be decoded on a single trial basis from electroencephalography (EEG) signals. It is often assumed that covert attention shifts are under voluntary control, and that they also occur in more natural and complex environments, but there is no direct evidence to support this assumption. We address this important issue by using random-dot stimuli to cue one of two opposite locations, where a visual target is presented. We contrast two conditions, one in which the random-dot motion is predictive of the target location, and the other, in which it provides ambiguous information. Behavioral results show attention shifts in anticipation of the visual target, in both conditions. In addition, using the common spatial patterns (CSPs) algorithm, we extract EEG power features in the alpha-band (around 10 Hz) that best discriminate the attended location in single trials. We obtain a significant decoding accuracy in 7/10 subjects using a cross-validation procedure applied in the predictive condition. Interestingly, similar accuracy (significant in 5/10 subjects) is obtained when the CSPs trained in the predictive condition are tested in the ambiguous condition. In agreement with this result, we find that the CSPs show very similar topographies in both conditions. These results shed a new light on the behavioral and EEG correlates of visuospatial attention in complex visual environments. This study demonstrates that alpha-power features could be used in brain-computer interfaces to decode covert attention shifts in an environment containing ambiguous spatial information.

19.
Neuroimage ; 114: 338-55, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25869861

RESUMO

Reach and grasp kinematics are known to be encoded in the spiking activity of neuronal ensembles and in local field potentials (LFPs) recorded from primate motor cortex during movement planning and execution. However, little is known, especially in LFPs, about the encoding of kinetic parameters, such as forces exerted on the object during the same actions. We implanted two monkeys with microelectrode arrays in the motor cortical areas MI and PMd to investigate encoding of grasp-related parameters in motor cortical LFPs during planning and execution of reach-and-grasp movements. We identified three components of the LFP that modulated during grasps corresponding to low (0.3-7Hz), intermediate (~10-~40Hz) and high (~80-250Hz) frequency bands. We show that all three components can be used to classify not only grip types but also object loads during planning and execution of a grasping movement. In addition, we demonstrate that all three components recorded during planning or execution can be used to continuously decode finger pressure forces and hand position related to the grasping movement. Low and high frequency components provide similar classification and decoding accuracies, which were substantially higher than those obtained from the intermediate frequency component. Our results demonstrate that intended reach and grasp kinetic parameters are encoded in multiple LFP bands during both movement planning and execution. These findings also suggest that the LFP is a reliable signal for the control of parameters related to object load and applied pressure forces in brain-machine interfaces.


Assuntos
Força da Mão , Córtex Motor/fisiologia , Movimento , Animais , Fenômenos Biomecânicos , Ondas Encefálicas , Feminino , Macaca
20.
Front Hum Neurosci ; 9: 165, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859208

RESUMO

The large number of mechanical degrees of freedom of the hand is not fully exploited during actual movements such as grasping. Usually, angular movements in various joints tend to be coupled, and EMG activities in different hand muscles tend to be correlated. The occurrence of covariation in the former was termed kinematic synergies, in the latter muscle synergies. This study addresses two questions: (i) Whether kinematic and muscle synergies can simultaneously accommodate for kinematic and kinetic constraints. (ii) If so, whether there is an interrelation between kinematic and muscle synergies. We used a reach-grasp-and-pull paradigm and recorded the hand kinematics as well as eight surface EMGs. Subjects had to either perform a precision grip or side grip and had to modify their grip force in order to displace an object against a low or high load. The analysis was subdivided into three epochs: reach, grasp-and-pull, and static hold. Principal component analysis (PCA, temporal or static) was performed separately for all three epochs, in the kinematic and in the EMG domain. PCA revealed that (i) Kinematic- and muscle-synergies can simultaneously accommodate kinematic (grip type) and kinetic task constraints (load condition). (ii) Upcoming grip and load conditions of the grasp are represented in kinematic- and muscle-synergies already during reach. Phase plane plots of the principal muscle-synergy against the principal kinematic synergy revealed (iii) that the muscle-synergy is linked (correlated, and in phase advance) to the kinematic synergy during reach and during grasp-and-pull. Furthermore (iv), pair-wise correlations of EMGs during hold suggest that muscle-synergies are (in part) implemented by coactivation of muscles through common input. Together, these results suggest that kinematic synergies have (at least in part) their origin not just in muscular activation, but in synergistic muscle activation. In short: kinematic synergies may result from muscle synergies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...