Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Healthc Inform Res ; 29(4): 301-314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37964452

RESUMO

OBJECTIVES: Enhancing critical care efficacy involves evaluating and improving system functioning. Benchmarking, a retrospective comparison of results against standards, aids risk-adjusted assessment and helps healthcare providers identify areas for improvement based on observed and predicted outcomes. The last two decades have seen the development of several models using machine learning (ML) for clinical outcome prediction. ML is a field of artificial intelligence focused on creating algorithms that enable computers to learn from and make predictions or decisions based on data. This narrative review centers on key discoveries and outcomes to aid clinicians and researchers in selecting the optimal methodology for critical care benchmarking using ML. METHODS: We used PubMed to search the literature from 2003 to 2023 regarding predictive models utilizing ML for mortality (592 articles), length of stay (143 articles), or mechanical ventilation (195 articles). We supplemented the PubMed search with Google Scholar, making sure relevant articles were included. Given the narrative style, papers in the cohort were manually curated for a comprehensive reader perspective. RESULTS: Our report presents comparative results for benchmarked outcomes and emphasizes advancements in feature types, preprocessing, model selection, and validation. It showcases instances where ML effectively tackled critical care outcome-prediction challenges, including nonlinear relationships, class imbalances, missing data, and documentation variability, leading to enhanced results. CONCLUSIONS: Although ML has provided novel tools to improve the benchmarking of critical care outcomes, areas that require further research include class imbalance, fairness, improved calibration, generalizability, and long-term validation of published models.

2.
Sci Rep ; 9(1): 3874, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846773

RESUMO

In the last decade, several models with network adaptive mechanisms (link deletion-creation, dynamic synapses, dynamic gains) have been proposed as examples of self-organized criticality (SOC) to explain neuronal avalanches. However, all these systems present stochastic oscillations hovering around the critical region that are incompatible with standard SOC. Here we make a linear stability analysis of the mean field fixed points of two self-organized quasi-critical systems: a fully connected network of discrete time stochastic spiking neurons with firing rate adaptation produced by dynamic neuronal gains and an excitable cellular automata with depressing synapses. We find that the fixed point corresponds to a stable focus that loses stability at criticality. We argue that when this focus is close to become indifferent, demographic noise can elicit stochastic oscillations that frequently fall into the absorbing state. This mechanism interrupts the oscillations, producing both power law avalanches and dragon king events, which appear as bands of synchronized firings in raster plots. Our approach differs from standard SOC models in that it predicts the coexistence of these different types of neuronal activity.

3.
Sci Rep ; 6: 35831, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819336

RESUMO

Phase transitions and critical behavior are crucial issues both in theoretical and experimental neuroscience. We report analytic and computational results about phase transitions and self-organized criticality (SOC) in networks with general stochastic neurons. The stochastic neuron has a firing probability given by a smooth monotonic function Φ(V) of the membrane potential V, rather than a sharp firing threshold. We find that such networks can operate in several dynamic regimes (phases) depending on the average synaptic weight and the shape of the firing function Φ. In particular, we encounter both continuous and discontinuous phase transitions to absorbing states. At the continuous transition critical boundary, neuronal avalanches occur whose distributions of size and duration are given by power laws, as observed in biological neural networks. We also propose and test a new mechanism to produce SOC: the use of dynamic neuronal gains - a form of short-term plasticity probably located at the axon initial segment (AIS) - instead of depressing synapses at the dendrites (as previously studied in the literature). The new self-organization mechanism produces a slightly supercritical state, that we called SOSC, in accord to some intuitions of Alan Turing.


Assuntos
Modelos Neurológicos , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Humanos
4.
J Neurosci ; 31(34): 12297-306, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21865472

RESUMO

Burst firing is ubiquitous in nervous systems and has been intensively studied in central pattern generators (CPGs). Previous works have described subtle intraburst spike patterns (IBSPs) that, despite being traditionally neglected for their lack of relation to CPG motor function, were shown to be cell-type specific and sensitive to CPG connectivity. Here we address this matter by investigating how a bursting motor neuron expresses information about other neurons in the network. We performed experiments on the crustacean stomatogastric pyloric CPG, both in control conditions and interacting in real-time with computer model neurons. The sensitivity of postsynaptic to presynaptic IBSPs was inferred by computing their average mutual information along each neuron burst. We found that details of input patterns are nonlinearly and inhomogeneously coded through a single synapse into the fine IBSPs structure of the postsynaptic neuron following burst. In this way, motor neurons are able to use different time scales to convey two types of information simultaneously: muscle contraction (related to bursting rhythm) and the behavior of other CPG neurons (at a much shorter timescale by using IBSPs as information carriers). Moreover, the analysis revealed that the coding mechanism described takes part in a previously unsuspected information pathway from a CPG motor neuron to a nerve that projects to sensory brain areas, thus providing evidence of the general physiological role of information coding through IBSPs in the regulation of neuronal firing patterns in remote circuits by the CNS.


Assuntos
Potenciais de Ação/fisiologia , Gânglios dos Invertebrados/fisiologia , Neurônios Motores/fisiologia , Transmissão Sináptica/fisiologia , Animais , Braquiúros , Simulação por Computador , Feminino , Gânglios dos Invertebrados/citologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Modelos Neurológicos , Neurônios Motores/classificação , Neurônios Motores/citologia , Contração Muscular/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Palinuridae , Periodicidade , Tempo de Reação/fisiologia , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...