Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 435(2): 113930, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237846

RESUMO

The focal adhesion protein, Hic-5 plays a key role in promoting extracellular matrix deposition and remodeling by cancer associated fibroblasts within the tumor stroma to promote breast tumor cell invasion. However, whether stromal matrix gene expression is regulated by Hic-5 is still unknown. Utilizing a constitutive Hic-5 knockout, Mouse Mammary Tumor Virus-Polyoma Middle T-Antigen spontaneous breast tumor mouse model, bulk RNAseq analysis was performed on cancer associated fibroblasts isolated from Hic-5 knockout mammary tumors. Functional network analysis highlighted a key role for Hic-5 in extracellular matrix organization, with both structural matrix genes, as well as matrix remodeling genes being differentially expressed in relation to Hic-5 expression. The subcellular distribution of the MRTF-A transcription factor and expression of a subset of MRTF-A responsive genes was also impacted by Hic-5 expression. Additionally, cytokine array analysis of conditioned media from the Hic-5 and Hic-5 knockout cancer associated fibroblasts revealed that Hic-5 is important for the secretion of several key factors that are associated with matrix remodeling, angiogenesis and immune evasion. Together, these data provide further evidence of a central role for Hic-5 expression in cancer associated fibroblasts in regulating the composition and organization of the tumor stroma microenvironment to promote breast tumor progression.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/patologia , Citocinas/genética , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética
2.
G3 (Bethesda) ; 10(12): 4399-4410, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32998936

RESUMO

Insulin signaling is critical for developmental growth and adult homeostasis, yet the downstream regulators of this signaling pathway are not completely understood. Using the model organism Drosophila melanogaster, we took a genomic approach to identify novel mediators of insulin signaling. These studies led to the identification of Meep, encoded by the gene CG32335 Expression of this gene is both insulin receptor- and diet-dependent. We found that Meep was specifically required in the developing fat body to tolerate a high-sugar diet (HSD). Meep is not essential on a control diet, but when reared on an HSD, knockdown of meep causes hyperglycemia, reduced growth, developmental delay, pupal lethality, and reduced longevity. These phenotypes stem in part from Meep's role in promoting insulin sensitivity and protein stability. This work suggests a critical role for protein homeostasis in development during overnutrition. Because Meep is conserved and obesity-associated in mammals, future studies on Meep may help to understand the role of proteostasis in insulin-resistant type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas de Drosophila , Drosophila melanogaster , Resistência à Insulina , Insulina , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Proteostase , Transdução de Sinais
3.
J Cell Sci ; 133(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938686

RESUMO

The current model for spindle positioning requires attachment of the microtubule (MT) motor cytoplasmic dynein to the cell cortex, where it generates pulling force on astral MTs to effect spindle displacement. How dynein is anchored by cortical attachment machinery to generate large spindle-pulling forces remains unclear. Here, we show that cortical clustering of Num1, the yeast dynein attachment molecule, is limited by its assembly factor Mdm36. Overexpression of Mdm36 results in an overall enhancement of Num1 clustering but reveals a population of dim Num1 clusters that mediate dynein anchoring at the cell cortex. Direct imaging shows that bud-localized, dim Num1 clusters containing around only six Num1 molecules mediate dynein-dependent spindle pulling via a lateral MT sliding mechanism. Mutations affecting Num1 clustering interfere with mitochondrial tethering but do not interfere with the dynein-based spindle-pulling function of Num1. We propose that formation of small ensembles of attachment molecules is sufficient for dynein anchorage and cortical generation of large spindle-pulling forces.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...