Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31638575

RESUMO

Human movement into insect vector and wildlife reservoir habitats determines zoonotic disease risks; however, few data are available to quantify the impact of land use on pathogen transmission. Here, we utilise GPS tracking devices and novel applications of ecological methods to develop fine-scale models of human space use relative to land cover to assess exposure to the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo. Combining data with spatially explicit models of mosquito biting rates, we demonstrate the role of individual heterogeneities in local space use in disease exposure. At a community level, our data indicate that areas close to both secondary forest and houses have the highest probability of human P. knowlesi exposure, providing quantitative evidence for the importance of ecotones. Despite higher biting rates in forests, incorporating human movement and space use into exposure estimates illustrates the importance of intensified interactions between pathogens, insect vectors and people around habitat edges.


Assuntos
Ecologia , Mordeduras e Picadas de Insetos/epidemiologia , Malária/transmissão , Zoonoses/transmissão , Adolescente , Adulto , Animais , Anopheles , Bornéu , Estudos Transversais , Ecossistema , Feminino , Florestas , Humanos , Insetos Vetores , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Plasmodium knowlesi , Adulto Jovem
2.
Lancet Planet Health ; 3(4): e179-e186, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31029229

RESUMO

BACKGROUND: Land use changes disrupt ecosystems, altering the transmission of vector-borne diseases. These changes have been associated with increasing incidence of zoonotic malaria caused by Plasmodium knowlesi; however, the population-level distributions of infection and exposure remain unknown. We aimed to measure prevalence of serological exposure to P knowlesi and assess associated risk factors. METHODS: We did an environmentally stratified, population-based, cross-sectional survey across households in the Kudat, Kota Marudu, Pitas, and Ranau districts in northern Sabah, Malaysia, encompassing a range of ecologies. Using blood samples, the transmission intensity of P knowlesi and other malaria species was measured by specific antibody prevalence and infection detected using molecular methods. Proportions and configurations of land types were extracted from maps derived from satellite images; a data-mining approach was used to select variables. A Bayesian hierarchical model for P knowlesi seropositivity was developed, incorporating questionnaire data about individual and household-level risk factors with selected landscape factors. FINDINGS: Between Sept 17, 2015, and Dec 12, 2015, 10 100 individuals with a median age of 25 years (range 3 months to 105 years) were sampled from 2849 households in 180 villages. 5·1% (95% CI 4·8-5·4) were seropositive for P knowlesi, and marked historical decreases were observed in the transmission of Plasmodium falciparum and Plasmodium vivax. Nine Plasmodium spp infections were detected. Age, male sex, contact with macaques, forest use, and raised house construction were positively associated with P knowlesi exposure, whereas residing at higher geographical elevations and use of insecticide were protective. Agricultural and forest variables, such as proportions and fragmentation of land cover types, predicted exposure at different spatial scales from households. INTERPRETATION: Although few infections were detected, P knowlesi exposure was observed in all demographic groups and was associated with occupational factors. Results suggest that agricultural expansion and forest fragmentation affect P knowlesi exposure, supporting linkages between land use change and P knowlesi transmission. FUNDING: UK Medical Research Council, Natural Environment Research Council, Economic and Social Research Council, and Biotechnology and Biosciences Research Council.


Assuntos
Malária/transmissão , Plasmodium knowlesi/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Infecções Assintomáticas/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Malária/epidemiologia , Malária/parasitologia , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Estudos Soroepidemiológicos , Adulto Jovem , Zoonoses/epidemiologia , Zoonoses/parasitologia , Zoonoses/transmissão
3.
J Appl Ecol ; 55(4): 1997-2007, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30008483

RESUMO

Monitoring abundance is essential for vector management, but it is often only possible in a fraction of managed areas. For vector control programmes, sampling to estimate abundance is usually carried out at a local-scale (10s km2), while interventions often extend across 100s km2. Geostatistical models have been used to interpolate between points where data are available, but this still requires costly sampling across the entire area of interest. Instead, we used geostatistical models to predict local-scale spatial variation in the abundance of tsetse-vectors of human and animal African trypanosomes-beyond the spatial extent of data to which models were fitted, in Serengeti, Tanzania.We sampled Glossina swynnertoni and Glossina pallidipes >10 km inside the Serengeti National Park (SNP) and along four transects extending into areas where humans and livestock live. We fitted geostatistical models to data >10 km inside the SNP to produce maps of abundance for the entire region, including unprotected areas.Inside the SNP, the mean number of G. pallidipes caught per trap per day in dense woodland was 166 (± 24 SE), compared to 3 (±1) in grassland. Glossina swynnertoni was more homogenous with respective means of 15 (±3) and 15 (±8). In general, models predicted a decline in abundance from protected to unprotected areas, related to anthropogenic changes to vegetation, which was confirmed during field survey. Synthesis and applications. Our approach allows vector control managers to identify sites predicted to have relatively high tsetse abundance, and therefore to design and implement improved surveillance strategies. In East and Southern Africa, trypanosomiasis is associated with wilderness areas. Our study identified pockets of vegetation which could sustain tsetse populations in farming areas outside the Serengeti National Park. Our method will assist countries in identifying, monitoring and, if necessary, controlling tsetse in trypanosomiasis foci. This has specific application to tsetse, but the approach could also be developed for vectors of other pathogens.

5.
Nature ; 522(7556): 315-20, 2015 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-26085270

RESUMO

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


Assuntos
Antimaláricos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Malária/parasitologia , Plasmodium/efeitos dos fármacos , Plasmodium/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Descoberta de Drogas , Feminino , Estágios do Ciclo de Vida/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/parasitologia , Malária/tratamento farmacológico , Masculino , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/antagonistas & inibidores , Fator 2 de Elongação de Peptídeos/metabolismo , Plasmodium/genética , Plasmodium/crescimento & desenvolvimento , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/metabolismo , Quinolinas/administração & dosagem , Quinolinas/química , Quinolinas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...