Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 18(7): 843-855, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30035638

RESUMO

The icy moons of the outer Solar System present the possibility of subsurface water, habitable conditions, and potential abodes for life. Access to evidence that reveals the presence of life on the icy moons can be facilitated by plumes that eject material from the subsurface out into space. One instrument capable of performing life-search investigations at the icy moons is the MAss SPectrometer for Planetary EXploration/Europa (MASPEX), which constitutes a high-resolution, high-sensitivity multibounce time-of-flight mass spectrometer capable of measuring trace amounts (ppb) of organic compounds. MASPEX has been selected for the NASA Europa Clipper mission and will sample any plumes and the surface-sputtered atmosphere to assess any evidence for habitability and life. MASPEX is capable of similar investigations targeted at other icy moons. Data may be forthcoming from direct sampling but also impact dissociation because of the high speed of some analytes. Impact dissociation is analogous to the dissociation provided by modern analytical pyrolysis methods. Radiolytic dissociation on the europan surface before or during the sputtering process can also induce fragmentation similar to pyrolysis. In this study, we have compiled pyrolysis mass spectrometry data from a variety of biological and nonbiological materials to demonstrate the ability of MASPEX to recognize habitability and detect life in any plumes and atmospheres of icy moons. Key Words: Europa-Icy moons-Life detection-Mass spectrometry-Organic matter. Astrobiology 18, 843-855.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno/química , Vida , Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Exobiologia/instrumentação , Gelo , Júpiter , Espectrometria de Massas/instrumentação , Pirólise
2.
Science ; 356(6334): 155-159, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28408597

RESUMO

Saturn's moon Enceladus has an ice-covered ocean; a plume of material erupts from cracks in the ice. The plume contains chemical signatures of water-rock interaction between the ocean and a rocky core. We used the Ion Neutral Mass Spectrometer onboard the Cassini spacecraft to detect molecular hydrogen in the plume. By using the instrument's open-source mode, background processes of hydrogen production in the instrument were minimized and quantified, enabling the identification of a statistically significant signal of hydrogen native to Enceladus. We find that the most plausible source of this hydrogen is ongoing hydrothermal reactions of rock containing reduced minerals and organic materials. The relatively high hydrogen abundance in the plume signals thermodynamic disequilibrium that favors the formation of methane from CO2 in Enceladus' ocean.

3.
Rev Sci Instrum ; 86(10): 105105, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26520982

RESUMO

A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a "perfect focus" mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.(3)) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is around 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.


Assuntos
Espectrometria de Massas/instrumentação , Elétrons , Desenho de Equipamento , Íons , Imãs , Gás Natural/análise , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA