Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Artif Intell ; 4: 642374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35005614

RESUMO

The ability of deep neural networks to form powerful emergent representations of complex statistical patterns in data is as remarkable as imperfectly understood. For deep ReLU networks, these are encoded in the mixed discrete-continuous structure of linear weight matrices and non-linear binary activations. Our article develops a new technique for instrumenting such networks to efficiently record activation statistics, such as information content (entropy) and similarity of patterns, in real-world training runs. We then study the evolution of activation patterns during training for networks of different architecture using different training and initialization strategies. As a result, we see characteristic- and general-related as well as architecture-related behavioral patterns: in particular, most architectures form bottom-up structure, with the exception of highly tuned state-of-the-art architectures and methods (PyramidNet and FixUp), where layers appear to converge more simultaneously. We also observe intermediate dips in entropy in conventional CNNs that are not visible in residual networks. A reference implementation is provided under a free license.

2.
Eur Radiol ; 31(4): 1812-1818, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32986160

RESUMO

OBJECTIVES: The goal of the present study was to classify the most common types of plain radiographs using a neural network and to validate the network's performance on internal and external data. Such a network could help improve various radiological workflows. METHODS: All radiographs from the year 2017 (n = 71,274) acquired at our institution were retrieved from the PACS. The 30 largest categories (n = 58,219, 81.7% of all radiographs performed in 2017) were used to develop and validate a neural network (MobileNet v1.0) using transfer learning. Image categories were extracted from DICOM metadata (study and image description) and mapped to the WHO manual of diagnostic imaging. As an independent, external validation set, we used images from other institutions that had been stored in our PACS (n = 5324). RESULTS: In the internal validation, the overall accuracy of the model was 90.3% (95%CI: 89.2-91.3%), whereas, for the external validation set, the overall accuracy was 94.0% (95%CI: 93.3-94.6%). CONCLUSIONS: Using data from one single institution, we were able to classify the most common categories of radiographs with a neural network. The network showed good generalizability on the external validation set and could be used to automatically organize a PACS, preselect radiographs so that they can be routed to more specialized networks for abnormality detection or help with other parts of the radiological workflow (e.g., automated hanging protocols; check if ordered image and performed image are the same). The final AI algorithm is publicly available for evaluation and extension. KEY POINTS: • Data from one single institution can be used to train a neural network for the correct detection of the 30 most common categories of plain radiographs. • The trained model achieved a high accuracy for the majority of categories and showed good generalizability to images from other institutions. • The neural network is made publicly available and can be used to automatically organize a PACS or to preselect radiographs so that they can be routed to more specialized neural networks for abnormality detection.


Assuntos
Aprendizado Profundo , Algoritmos , Humanos , Redes Neurais de Computação , Radiografia , Fluxo de Trabalho
3.
Liver Int ; 40(3): 694-703, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31943703

RESUMO

BACKGROUND AND AIMS: Deciding when to repeat and when to stop transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC) can be difficult even for experienced investigators. Our aim was to develop a survival prediction model for such patients undergoing TACE using novel machine learning algorithms and to compare it to conventional prediction scores, ART, ABCR and SNACOR. METHODS: For this retrospective analysis, 282 patients who underwent TACE for HCC at our tertiary referral centre between January 2005 and December 2017 were included in the final analysis. We built an artificial neural network (ANN) including all parameters used by the aforementioned risk scores and other clinically meaningful parameters. Following an 80:20 split, the first 225 patients were used for training; the more recently treated 20% were used for validation. RESULTS: The ANN had a promising performance at predicting 1-year survival, with an area under the ROC curve (AUC) of 0.77 ± 0.13. Internal validation yielded an AUC of 0.83 ± 0.06, a positive predictive value of 87.5% and a negative predictive value of 68.0%. The sensitivity was 77.8% and specificity 81.0%. In a head-to-head comparison, the ANN outperformed the aforementioned scoring systems, which yielded lower AUCs (SNACOR 0.73 ± 0.07, ABCR 0.70 ± 0.07 and ART 0.54 ± 0.08). This difference reached significance for ART (P < .001); for ABCR and SNACOR significance was not reached (P = .143 and P = .201). CONCLUSIONS: Artificial neural networks could be better at predicting patient survival after TACE for HCC than traditional scoring systems. Once established, such prediction models could easily be deployed in clinical routine and help determine optimal patient care.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/terapia , Redes Neurais de Computação , Projetos Piloto , Estudos Retrospectivos , Resultado do Tratamento
4.
Insights Imaging ; 10(1): 93, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31549305

RESUMO

BACKGROUND: Data used for training of deep learning networks usually needs large amounts of accurate labels. These labels are usually extracted from reports using natural language processing or by time-consuming manual review. The aim of this study was therefore to develop and evaluate a workflow for using data from structured reports as labels to be used in a deep learning application. MATERIALS AND METHODS: We included all plain anteriorposterior radiographs of the ankle for which structured reports were available. A workflow was designed and implemented where a script was used to automatically retrieve, convert, and anonymize the respective radiographs of cases where fractures were either present or absent from the institution's picture archiving and communication system (PACS). These images were then used to retrain a pretrained deep convolutional neural network. Finally, performance was evaluated on a set of previously unseen radiographs. RESULTS: Once implemented and configured, completion of the whole workflow took under 1 h. A total of 157 structured reports were retrieved from the reporting platform. For all structured reports, corresponding radiographs were successfully retrieved from the PACS and fed into the training process. On an unseen validation subset, the model showed a satisfactory performance with an area under the curve of 0.850 (95% CI 0.634-1.000) for detection of fractures. CONCLUSION: We demonstrate that data obtained from structured reports written in clinical routine can be used to successfully train deep learning algorithms. This highlights the potential role of structured reporting for the future of radiology, especially in the context of deep learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...