Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11982, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488188

RESUMO

Time-domain diffuse correlation spectroscopy (TD-DCS) has been introduced as an advancement of the "classical" continuous wave DCS (CW-DCS) allowing one to not only to measure depth-resolved blood flow index (BFI) but also to extract optical properties of the measured medium without using any additional diffuse optics technique. However, this method is a photon-starved technique, specially when considering only the late photons that are of primary interest which has limited its in vivo application. In this work, we present a TD-DCS system based on a superconducting nanowire single-photon detector (SNSPD) with a high quantum efficiency, a narrow timing response, and a negligibly low dark count noise. We compared it to the typically used single-photon avalanche diode (SPAD) detector. In addition, this system allowed us to conduct fast in vivo measurements and obtain gated pulsatile BFI on the adult human forehead.

2.
J Biomed Opt ; 28(12): 121202, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37021124

RESUMO

Significance: Interstitial fiber-based spectroscopy is gaining interest for real-time in vivo optical biopsies, endoscopic interventions, and local monitoring of therapy. Different from other photonics approaches, time-domain diffuse optical spectroscopy (TD-DOS) can probe the tissue at a few cm distance from the fiber tip and disentangle absorption from the scattering properties. Nevertheless, the signal detected at a short distance from the source is strongly dominated by the photons arriving early at the detector, thus hampering the possibility of resolving late photons, which are rich in information about depth and absorption. Aim: To fully benefit from the null-distance approach, a detector with an extremely high dynamic range is required to effectively collect the late photons; the goal of our paper is to test its feasibility to perform TD-DOS measurements at null source-detector separations (NSDS). Approach: In particular, we demonstrate the use of a superconducting nanowire single photon detector (SNSPD) to perform TD-DOS at almost NSDS ( ≈ 150 µ m ) by exploiting the high dynamic range and temporal resolution of the SNSPD to extract late arriving, deep-traveling photons from the burst of early photons. Results: This approach was demonstrated both on Monte Carlo simulations and on phantom measurements, achieving an accuracy in the retrieval of the water spectrum of better than 15%, spanning almost two decades of absorption change in the 700- to 1100-nm range. Additionally, we show that, for interstitial measurements at null source-detector distance, the scattering coefficient has a negligible effect on late photons, easing the retrieval of the absorption coefficient. Conclusions: Utilizing the SNSPD, broadband TD-DOS measurements were performed to successfully retrieve the absorption spectra of the liquid phantoms. Although the SNSPD has certain drawbacks for use in a clinical system, it is an emerging field with research progressing rapidly, and this makes the SNSPD a viable option and a good solution for future research in needle guided time-domain interstitial fiber spectroscopy.


Assuntos
Nanofios , Óptica e Fotônica , Fótons , Imagens de Fantasmas , Análise Espectral
3.
Nat Commun ; 12(1): 5844, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615880

RESUMO

The excellent optoelectronic performance of lead halide perovskites has generated great interest in their fundamental properties. The polar nature of the perovskite lattice means that electron-lattice coupling is governed by the Fröhlich interaction. Still, considerable ambiguity exists regarding the phonon modes that participate in this crucial mechanism. Here, we use multiphonon Raman scattering and THz time-domain spectroscopy to investigate Fröhlich coupling in CsPbBr3. We identify a longitudinal optical phonon mode that dominates the interaction, and surmise that this mode effectively defines exciton-phonon scattering in CsPbBr3, and possibly similar materials. It is additionally revealed that the observed strength of the Fröhlich interaction is significantly higher than the expected intrinsic value for CsPbBr3, and is likely enhanced by carrier localization in the colloidal perovskite nanocrystals. Our experiments also unearthed a dipole-related dielectric relaxation mechanism which may impact transport properties.

4.
ACS Nano ; 13(9): 10201-10209, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31464420

RESUMO

Colloidal InP core nanocrystals are taking over CdSe-based nanocrystals, notably in optoelectronic applications. Despite their use in commercial devices, such as display screens, the optical properties of InP nanocrystals and especially their relation to the exciton fine structures remain poorly understood. In this work, we show that the ensemble magneto-optical properties of InP-based core/shell nanocrystals investigated in strong magnetic fields up to 30 T are strikingly different from other colloidal nanostructures. Notably, the mixing of the lowest spin-forbidden dark exciton state with the nearest spin-allowed bright state does not occur up to the highest magnetic fields applied. This lack of mixing in an ensemble of nanocrystals suggests an anisotropy tolerance of InP nanocrystals. This striking property allowed us to unveil the slow spin dynamics between Zeeman sublevels (up to 400 ns at 15 T). Furthermore, we show that the unexpected magnetic-field-induced lengthening of the dark exciton lifetime results from the hyperfine interaction between the spin of the electron in the dark exciton with the nuclear magnetic moments. Our results demonstrate the richness of the spin physics in InP quantum dots and stress the large potential of InP nanostructures for spin-based applications.

5.
J Phys Chem Lett ; 10(18): 5468-5475, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31424940

RESUMO

The fine structure of exciton states in colloidal quantum dots (QDs) results from the compound effect of anisotropy and electron-hole exchange. By means of single-dot photoluminescence spectroscopy, we show that the emission of photoexcited InP/ZnSe QDs originates from radiative recombination of such fine structure exciton states. Depending on the excitation power, we identify a bright exciton doublet, a trion singlet, and a biexciton doublet line that all show pronounced polarization. Fluorescence line narrowing spectra of an ensemble of InP/ZnSe QDs in magnetic fields demonstrate that the bright exciton effectively consists of three states. The Zeeman splitting of these states is well described by an isotropic exciton model, where the fine structure is dominated by electron-hole exchange and shape anisotropy leads to only a minor splitting of the F = 1 triplet. We argue that excitons in InP-based QDs are nearly isotropic because the particular ratio of light and heavy hole masses in InP makes the exciton fine structure insensitive to shape anisotropy.

6.
ACS Photonics ; 5(8): 3353-3362, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30175158

RESUMO

Nanocrystalline InP quantum dots (QDs) hold promise for heavy-metal-free optoelectronic applications due to their bright and size-tunable emission in the visible range. Photochemical stability and high photoluminescence (PL) quantum yield are obtained by a diversity of epitaxial shells around the InP core. To understand and optimize the emission line shapes, the exciton fine structure of InP core/shell QD systems needs be investigated. Here, we study the exciton fine structure of InP/ZnSe core/shell QDs with core diameters ranging from 2.9 to 3.6 nm (PL peak from 2.3 to 1.95 eV at 4 K). PL decay measurements as a function of temperature in the 10 mK to 300 K range show that the lowest exciton fine structure state is a dark state, from which radiative recombination is assisted by coupling to confined acoustic phonons with energies ranging from 4 to 7 meV, depending on the core diameter. Circularly polarized fluorescence line-narrowing (FLN) spectroscopy at 4 K under high magnetic fields (up to 30 T) demonstrates that radiative recombination from the dark F = ±2 state involves acoustic and optical phonons, from both the InP core and the ZnSe shell. Our data indicate that the highest intensity FLN peak is an acoustic phonon replica rather than a zero-phonon line, implying that the energy separation observed between the F = ±1 state and the highest intensity peak in the FLN spectra (6 to 16 meV, depending on the InP core size) is larger than the splitting between the dark and bright fine structure exciton states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...