Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Hum Mol Genet ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879759

RESUMO

Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality, with large disparities in incidence rates between Black and White Americans. Polygenic risk scores (PRSs) limited to variants discovered in genome-wide association studies in European-ancestry samples can identify European-ancestry individuals at high risk of VTE. However, there is limited evidence on whether high-dimensional PRS constructed using more sophisticated methods and more diverse training data can enhance the predictive ability and their utility across diverse populations. We developed PRSs for VTE using summary statistics from the International Network against Venous Thrombosis (INVENT) consortium genome-wide association studies meta-analyses of European- (71 771 cases and 1 059 740 controls) and African-ancestry samples (7482 cases and 129 975 controls). We used LDpred2 and PRS-CSx to construct ancestry-specific and multi-ancestry PRSs and evaluated their performance in an independent European- (6781 cases and 103 016 controls) and African-ancestry sample (1385 cases and 12 569 controls). Multi-ancestry PRSs with weights tuned in European-ancestry samples slightly outperformed ancestry-specific PRSs in European-ancestry test samples (e.g. the area under the receiver operating curve [AUC] was 0.609 for PRS-CSx_combinedEUR and 0.608 for PRS-CSxEUR [P = 0.00029]). Multi-ancestry PRSs with weights tuned in African-ancestry samples also outperformed ancestry-specific PRSs in African-ancestry test samples (PRS-CSxAFR: AUC = 0.58, PRS-CSx_combined AFR: AUC = 0.59), although this difference was not statistically significant (P = 0.34). The highest fifth percentile of the best-performing PRS was associated with 1.9-fold and 1.68-fold increased risk for VTE among European- and African-ancestry subjects, respectively, relative to those in the middle stratum. These findings suggest that the multi-ancestry PRS might be used to improve performance across diverse populations to identify individuals at highest risk for VTE.

3.
medRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38903089

RESUMO

Genome-wide association studies (GWAS) have identified numerous body mass index (BMI) loci. However, most underlying mechanisms from risk locus to BMI remain unknown. Leveraging omics data through integrative analyses could provide more comprehensive views of biological pathways on BMI. We analyzed genotype and blood gene expression data in up to 5,619 samples from the Framingham Heart Study (FHS). Using 3,992 single nucleotide polymorphisms (SNPs) at 97 BMI loci and 20,692 transcripts within 1 Mb, we performed separate association analyses of transcript with BMI and SNP with transcript (PBMI and PSNP, respectively) and then a correlated meta-analysis between the full summary data sets (PMETA). We identified transcripts that met Bonferroni-corrected significance for each omic, were more significant in the correlated meta-analysis than each omic, and were at least nominally associated with BMI in FHS data. Among 308 significant SNP-transcript-BMI associations, we identified seven genes (NT5C2, GSTM3, SNAPC3, SPNS1, TMEM245, YPEL3, and ZNF646) in five association regions. Using an independent sample of blood gene expression data, we validated results for SNAPC3 and YPEL3. We tested for generalization of these associations in hypothalamus, nucleus accumbens, and liver and observed significant (PMETA<0.05 & PMETA

4.
Circulation ; 150(2): 102-110, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38860364

RESUMO

BACKGROUND: The majority of out-of-hospital cardiac arrests (OHCAs) occur among individuals in the general population, for whom there is no established strategy to identify risk. In this study, we assess the use of electronic health record (EHR) data to identify OHCA in the general population and define salient factors contributing to OHCA risk. METHODS: The analytical cohort included 2366 individuals with OHCA and 23 660 age- and sex-matched controls receiving health care at the University of Washington. Comorbidities, electrocardiographic measures, vital signs, and medication prescription were abstracted from the EHR. The primary outcome was OHCA. Secondary outcomes included shockable and nonshockable OHCA. Model performance including area under the receiver operating characteristic curve and positive predictive value were assessed and adjusted for observed rate of OHCA across the health system. RESULTS: There were significant differences in demographic characteristics, vital signs, electrocardiographic measures, comorbidities, and medication distribution between individuals with OHCA and controls. In external validation, discrimination in machine learning models (area under the receiver operating characteristic curve 0.80-0.85) was superior to a baseline model with conventional cardiovascular risk factors (area under the receiver operating characteristic curve 0.66). At a specificity threshold of 99%, correcting for baseline OHCA incidence across the health system, positive predictive value was 2.5% to 3.1% in machine learning models compared with 0.8% for the baseline model. Longer corrected QT interval, substance abuse disorder, fluid and electrolyte disorder, alcohol abuse, and higher heart rate were identified as salient predictors of OHCA risk across all machine learning models. Established cardiovascular risk factors retained predictive importance for shockable OHCA, but demographic characteristics (minority race, single marital status) and noncardiovascular comorbidities (substance abuse disorder) also contributed to risk prediction. For nonshockable OHCA, a range of salient predictors, including comorbidities, habits, vital signs, demographic characteristics, and electrocardiographic measures, were identified. CONCLUSIONS: In a population-based case-control study, machine learning models incorporating readily available EHR data showed reasonable discrimination and risk enrichment for OHCA in the general population. Salient factors associated with OCHA risk were myriad across the cardiovascular and noncardiovascular spectrum. Public health and tailored strategies for OHCA prediction and prevention will require incorporation of this complexity.


Assuntos
Registros Eletrônicos de Saúde , Parada Cardíaca Extra-Hospitalar , Humanos , Masculino , Parada Cardíaca Extra-Hospitalar/epidemiologia , Parada Cardíaca Extra-Hospitalar/diagnóstico , Feminino , Pessoa de Meia-Idade , Idoso , Fatores de Risco , Adulto , Valor Preditivo dos Testes , Medição de Risco , Comorbidade , Eletrocardiografia , Aprendizado de Máquina , Estudos de Casos e Controles
5.
Nat Aging ; 4(8): 1043-1052, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834882

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.


Assuntos
Hematopoiese Clonal , Epigênese Genética , Proteômica , Hematopoiese Clonal/genética , Humanos , Metilação de DNA , Feminino , Masculino , Células-Tronco Hematopoéticas/metabolismo , Pessoa de Meia-Idade , Proteoma/metabolismo , Proteoma/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Idoso
6.
J Thromb Haemost ; 22(8): 2261-2269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782299

RESUMO

BACKGROUND: Increased risk of venous thromboembolism (VTE) is a life-threatening side effect for users of oral contraceptives (OCs) or hormone therapy (HT). OBJECTIVES: To investigate the potential for genetic predisposition to VTE in OC or HT users, we conducted a gene-by-environment case-only meta-analysis of genome-wide association studies (GWAS). METHODS: Use or nonuse of OCs (7 studies) or HT (8 studies) at the time of the VTE event was determined by pharmacy records or self-report. A synergy index (SI) was modeled for each variant in each study and submultiplicative/supramultiplicative gene-by-environment interactions were estimated. The SI parameters were first meta-analyzed across OC and HT studies and subsequently meta-analyzed to obtain an overall estimate. The primary analysis was agnostic GWAS and interrogated all imputed genotypes using a P value threshold of <5.0 × 10-8; secondary analyses were candidate-based. RESULTS: The VTE case-only OC meta-analysis included 2895 OC users and 6607 nonusers; the case-only HT meta-analysis included 2434 HT users and 12 793 nonusers. In primary GWAS meta-analyses, no variant reached genome-wide significance, but the smallest P value approached statistical significance: rs9386463 (P = 5.03 × 10-8). We tested associations for 138 candidate variants and identified 2 that exceeded statistical significance (0.05/138 = 3.62 × 10-4): F5 rs6025 (P = 1.87 × 10-5; SI, 1.29; previously observed) and F11 rs2036914 (P = 2.0 × 10-4; SI, 0.91; new observation). CONCLUSION: The candidate variant approach to identify submultiplictive/supramultiplicative associations between genetic variation and OC and HT use identified a new association with common genetic variation in F11, while the agnostic interrogations did not yield new discoveries.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/induzido quimicamente , Feminino , Fatores de Risco , Adulto , Interação Gene-Ambiente , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Medição de Risco , Anticoncepcionais Orais Hormonais/efeitos adversos , Anticoncepcionais Orais Hormonais/administração & dosagem , Variação Genética , Terapia de Reposição de Estrogênios/efeitos adversos
7.
Sci Rep ; 14(1): 12436, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816422

RESUMO

We construct non-linear machine learning (ML) prediction models for systolic and diastolic blood pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). We developed a two-model ensemble, consisting of a baseline model, where prediction is based on demographic and clinical variables only, and a genetic model, where we also include PRSs. We evaluate the use of a linear versus a non-linear model at both the baseline and the genetic model levels and assess the improvement in performance when incorporating multiple PRSs. We report the ensemble model's performance as percentage variance explained (PVE) on a held-out test dataset. A non-linear baseline model improved the PVEs from 28.1 to 30.1% (SBP) and 14.3% to 17.4% (DBP) compared with a linear baseline model. Including seven PRSs in the genetic model computed based on the largest available GWAS of SBP/DBP improved the genetic model PVE from 4.8 to 5.1% (SBP) and 4.7 to 5% (DBP) compared to using a single PRS. Adding additional 14 PRSs computed based on two independent GWASs further increased the genetic model PVE to 6.3% (SBP) and 5.7% (DBP). PVE differed across self-reported race/ethnicity groups, with primarily all non-White groups benefitting from the inclusion of additional PRSs. In summary, non-linear ML models improves BP prediction in models incorporating diverse populations.


Assuntos
Pressão Sanguínea , Estudo de Associação Genômica Ampla , Aprendizado de Máquina , Herança Multifatorial , Fenótipo , Humanos , Pressão Sanguínea/genética , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla/métodos , Fatores de Risco , Masculino , Feminino , Predisposição Genética para Doença , Modelos Genéticos , Hipertensão/genética , Hipertensão/fisiopatologia , Pessoa de Meia-Idade , Estratificação de Risco Genético
8.
Nat Commun ; 15(1): 4417, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789417

RESUMO

Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.


Assuntos
Estudo de Associação Genômica Ampla , Homeostase do Telômero , Telômero , Humanos , Telômero/genética , Telômero/metabolismo , Células K562 , Homeostase do Telômero/genética , Polimorfismo de Nucleotídeo Único , Regulação da Expressão Gênica , Sistemas CRISPR-Cas
9.
Epigenetics ; 19(1): 2333668, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38571307

RESUMO

Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.


Assuntos
Proteína C-Reativa , Metilação de DNA , Humanos , Proteína C-Reativa/genética , Epigênese Genética , DNA , Inflamação/genética , Estudo de Associação Genômica Ampla , Ilhas de CpG , Peptídeos e Proteínas de Sinalização Intracelular/genética
10.
Diabetes Care ; 47(6): 1042-1047, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652672

RESUMO

OBJECTIVE: To identify genetic risk factors for incident cardiovascular disease (CVD) among people with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We conducted a multiancestry time-to-event genome-wide association study for incident CVD among people with T2D. We also tested 204 known coronary artery disease (CAD) variants for association with incident CVD. RESULTS: Among 49,230 participants with T2D, 8,956 had incident CVD events (event rate 18.2%). We identified three novel genetic loci for incident CVD: rs147138607 (near CACNA1E/ZNF648, hazard ratio [HR] 1.23, P = 3.6 × 10-9), rs77142250 (near HS3ST1, HR 1.89, P = 9.9 × 10-9), and rs335407 (near TFB1M/NOX3, HR 1.25, P = 1.5 × 10-8). Among 204 known CAD loci, 5 were associated with incident CVD in T2D (multiple comparison-adjusted P < 0.00024, 0.05/204). A standardized polygenic score of these 204 variants was associated with incident CVD with HR 1.14 (P = 1.0 × 10-16). CONCLUSIONS: The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Polimorfismo de Nucleotídeo Único
11.
Blood ; 143(18): 1845-1855, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320121

RESUMO

ABSTRACT: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.


Assuntos
Moléculas de Adesão Celular , Fator VIII , Cininogênios , Lectinas Tipo C , Receptores de Superfície Celular , Fator de von Willebrand , Humanos , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Polimorfismo de Nucleotídeo Único , Células Endoteliais da Veia Umbilical Humana/metabolismo , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Trombose/genética , Trombose/sangue , Estudos de Associação Genética , Masculino , Células Endoteliais/metabolismo , Feminino
12.
Nat Commun ; 15(1): 888, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291025

RESUMO

To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.


Assuntos
Glândula Tireoide , Tiroxina , Humanos , Glândula Tireoide/metabolismo , Tiroxina/metabolismo , Estudo de Associação Genômica Ampla , Tri-Iodotironina/metabolismo , Tireotropina/metabolismo
13.
medRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260294

RESUMO

Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality, with large disparities in incidence rates between Black and White Americans. Polygenic risk scores (PRSs) limited to variants discovered in genome-wide association studies in European-ancestry samples can identify European-ancestry individuals at high risk of VTE. However, there is limited evidence on whether high-dimensional PRS constructed using more sophisticated methods and more diverse training data can enhance the predictive ability and their utility across diverse populations. We developed PRSs for VTE using summary statistics from the International Network against Venous Thrombosis (INVENT) consortium GWAS meta-analyses of European- (71,771 cases and 1,059,740 controls) and African-ancestry samples (7,482 cases and 129,975 controls). We used LDpred2 and PRSCSx to construct ancestry-specific and multi-ancestry PRSs and evaluated their performance in an independent European- (6,261 cases and 88,238 controls) and African-ancestry sample (1,385 cases and 12,569 controls). Multi-ancestry PRSs with weights tuned in European- and African-ancestry samples, respectively, outperformed ancestry-specific PRSs in European- (PRSCSXEUR: AUC=0.61 (0.60, 0.61), PRSCSX_combinedEUR: AUC=0.61 (0.60, 0.62)) and African-ancestry test samples (PRSCSXAFR: AUC=0.58 (0.57, 0.6), PRSCSX_combined AFR: AUC=0.59 (0.57, 0.60)). The highest fifth percentile of the best-performing PRS was associated with 1.9-fold and 1.68-fold increased risk for VTE among European- and African-ancestry subjects, respectively, relative to those in the middle stratum. These findings suggest that the multi-ancestry PRS may be used to identify individuals at highest risk for VTE and provide guidance for the most effective treatment strategy across diverse populations.

14.
medRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168328

RESUMO

We construct non-linear machine learning (ML) prediction models for systolic and diastolic blood pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). We developed a two-model ensemble, consisting of a baseline model, where prediction is based on demographic and clinical variables only, and a genetic model, where we also include PRSs. We evaluate the use of a linear versus a non-linear model at both the baseline and the genetic model levels and assess the improvement in performance when incorporating multiple PRSs. We report the ensemble model's performance as percentage variance explained (PVE) on a held-out test dataset. A non-linear baseline model improved the PVEs from 28.1% to 30.1% (SBP) and 14.3% to 17.4% (DBP) compared with a linear baseline model. Including seven PRSs in the genetic model computed based on the largest available GWAS of SBP/DBP improved the genetic model PVE from 4.8% to 5.1% (SBP) and 4.7% to 5% (DBP) compared to using a single PRS. Adding additional 14 PRSs computed based on two independent GWASs further increased the genetic model PVE to 6.3% (SBP) and 5.7% (DBP). PVE differed across self-reported race/ethnicity groups, with primarily all non-White groups benefitting from the inclusion of additional PRSs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA