Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 529: 129-147, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591330

RESUMO

We consider the possibility of applying game theory to analysis and modeling of neurobiological systems. Specifically, the basic properties and features of information asymmetric signaling games are considered and discussed as having potential to explain diverse neurobiological phenomena; we focus on neuronal action potential discharge that can represent cognitive variables in memory and purposeful behavior. We begin by arguing that there is a pressing need for conceptual frameworks that can permit analysis and integration of information and explanations across many scales of biological function including gene regulation, molecular and biochemical signaling, cellular and metabolic function, neuronal population, and systems level organization to generate plausible hypotheses across these scales. Developing such integrative frameworks is crucial if we are to understand cognitive functions like learning, memory, and perception. The present work focuses on systems neuroscience organized around the connected brain regions of the entorhinal cortex and hippocampus. These areas are intensely studied in rodent subjects as model neuronal systems that undergo activity-dependent synaptic plasticity to form neuronal circuits and represent memories and spatial knowledge used for purposeful navigation. Examples of cognition-related spatial information in the observed neuronal discharge of hippocampal place cell populations and medial entorhinal head-direction cell populations are used to illustrate possible challenges to information maximization concepts. It may be natural to explain these observations using the ideas and features of information asymmetric signaling games.

2.
Heliyon ; 9(3): e14115, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911878

RESUMO

The current, rapidly diversifying pandemic has accelerated the need for efficient and effective identification of potential drug candidates for COVID-19. Knowledge on host-immune response to SARS-CoV-2 infection, however, remains limited with few drugs approved to date. Viable strategies and tools are rapidly arising to address this, especially with repurposing of existing drugs offering significant promise. Here we introduce a systems biology tool, the PHENotype SIMulator, which -by leveraging available transcriptomic and proteomic databases-allows modeling of SARS-CoV-2 infection in host cells in silico to i) determine with high sensitivity and specificity (both>96%) the viral effects on cellular host-immune response, resulting in specific cellular SARS-CoV-2 signatures and ii) utilize these cell-specific signatures to identify promising repurposable therapeutics. Powered by this tool, coupled with domain expertise, we identify several potential COVID-19 drugs including methylprednisolone and metformin, and further discern key cellular SARS-CoV-2-affected pathways as potential druggable targets in COVID-19 pathogenesis.

3.
Res Sq ; 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33880466

RESUMO

The current, rapidly diversifying pandemic has accelerated the need for efficient and effective identification of potential drug candidates for COVID-19. Knowledge on host-immune response to SARS-CoV-2 infection, however, remains limited with very few drugs approved to date. Viable strategies and tools are rapidly arising to address this, especially with repurposing of existing drugs offering significant promise. Here we introduce a systems biology tool, the PHENotype SIMulator, which - by leveraging available transcriptomic and proteomic databases - allows modeling of SARS-CoV-2 infection in host cells in silico to i) determine with high sensitivity and specificity (both > 96%) the viral effects on cellular host-immune response, resulting in a specific cellular SARS-CoV-2 signature and ii) utilize this specific signature to narrow down promising repurposable therapeutic strategies. Powered by this tool, coupled with domain expertise, we have identified several potential COVID-19 drugs including methylprednisolone and metformin, and further discern key cellular SARS-CoV-2-affected pathways as potential new druggable targets in COVID-19 pathogenesis.

4.
Int J Multiscale Comput Eng ; 18(3): 329-333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32831809

RESUMO

We write to introduce our novel group formed to confront some of the issues raised by the COVID-19 pandemic. Information about the group, which we named "cure COVid for Ever and for All" (RxCOVEA), its dynamic membership (changing regularly), and some of its activities-described in more technical detail for expert perusal and commentary-are available upon request.

5.
J Neurosci ; 37(15): 4158-4180, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28283561

RESUMO

Using a genetic mouse model that faithfully recapitulates a DISC1 genetic alteration strongly associated with schizophrenia and other psychiatric disorders, we examined the impact of this mutation within the prefrontal cortex. Although cortical layering, cytoarchitecture, and proteome were found to be largely unaffected, electrophysiological examination of the mPFC revealed both neuronal hyperexcitability and alterations in short-term synaptic plasticity consistent with enhanced neurotransmitter release. Increased excitability of layer II/III pyramidal neurons was accompanied by consistent reductions in voltage-activated potassium currents near the action potential threshold as well as by enhanced recruitment of inputs arising from superficial layers to layer V. We further observed reductions in both the paired-pulse ratios and the enhanced short-term depression of layer V synapses arising from superficial layers consistent with enhanced neurotransmitter release at these synapses. Recordings from layer II/III pyramidal neurons revealed action potential widening that could account for enhanced neurotransmitter release. Significantly, we found that reduced functional expression of the voltage-dependent potassium channel subunit Kv1.1 substantially contributes to both the excitability and short-term plasticity alterations that we observed. The underlying dysregulation of Kv1.1 expression was attributable to cAMP elevations in the PFC secondary to reduced phosphodiesterase 4 activity present in Disc1 deficiency and was rescued by pharmacological blockade of adenylate cyclase. Our results demonstrate a potentially devastating impact of Disc1 deficiency on neural circuit function, partly due to Kv1.1 dysregulation that leads to a dual dysfunction consisting of enhanced neuronal excitability and altered short-term synaptic plasticity.SIGNIFICANCE STATEMENT Schizophrenia is a profoundly disabling psychiatric illness with a devastating impact not only upon the afflicted but also upon their families and the broader society. Although the underlying causes of schizophrenia remain poorly understood, a growing body of studies has identified and strongly implicated various specific risk genes in schizophrenia pathogenesis. Here, using a genetic mouse model, we explored the impact of one of the most highly penetrant schizophrenia risk genes, DISC1, upon the medial prefrontal cortex, the region believed to be most prominently dysfunctional in schizophrenia. We found substantial derangements in both neuronal excitability and short-term synaptic plasticity-parameters that critically govern neural circuit information processing-suggesting that similar changes may critically, and more broadly, underlie the neural computational dysfunction prototypical of schizophrenia.


Assuntos
Potenciais de Ação/fisiologia , Modelos Animais de Doenças , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/fisiopatologia , Gravidez , Esquizofrenia/genética , Esquizofrenia/fisiopatologia
6.
Mol Neuropsychiatry ; 2(1): 28-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27606318

RESUMO

Despite the recent progress in psychiatric genetics, very few studies have focused on genetic risk factors in glial cells that, compared to neurons, can manifest different molecular pathologies underlying psychiatric disorders. In order to address this issue, we studied the effects of mutant disrupted in schizophrenia 1 (DISC1), a genetic risk factor for schizophrenia, in cultured primary neurons and astrocytes using an unbiased mass spectrometry-based proteomic approach. We found that selective expression of mutant DISC1 in neurons affects a wide variety of proteins predominantly involved in neuronal development (e.g., SOX1) and vesicular transport (Rab proteins), whereas selective expression of mutant DISC1 in astrocytes produces changes in the levels of mitochondrial (GDPM), nuclear (TMM43) and cell adhesion (ECM2) proteins. The present study demonstrates that DISC1 variants can perturb distinct molecular pathways in a cell type-specific fashion to contribute to psychiatric disorders through heterogenic effects in diverse brain cells.

7.
Mol Autism ; 7: 17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26933487

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. METHODS: Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. RESULTS: Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. CONCLUSIONS: Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Vesículas Sinápticas/metabolismo , Animais , Animais Congênicos , Células Cultivadas , Cerebelo/patologia , Cerebelo/fisiopatologia , Corantes Fluorescentes , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Microscopia Intravital , Masculino , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Microscopia Eletrônica , Modelos Animais , Proteínas do Tecido Nervoso/análise , Terminações Pré-Sinápticas/metabolismo , Proteoma , Células de Purkinje/fisiologia , Células de Purkinje/ultraestrutura , Compostos de Piridínio , Compostos de Amônio Quaternário , Transdução de Sinais , Transmissão Sináptica , Sinaptossomos/metabolismo
8.
J Cell Biol ; 204(5): 759-75, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24590174

RESUMO

Munc18-1 is a soluble protein essential for synaptic transmission. To investigate the dynamics of endogenous Munc18-1 in neurons, we created a mouse model expressing fluorescently tagged Munc18-1 from the endogenous munc18-1 locus. We show using fluorescence recovery after photobleaching in hippocampal neurons that the majority of Munc18-1 trafficked through axons and targeted to synapses via lateral diffusion together with syntaxin-1. Munc18-1 was strongly expressed at presynaptic terminals, with individual synapses showing a large variation in expression. Axon-synapse exchange rates of Munc18-1 were high: during stimulation, Munc18-1 rapidly dispersed from synapses and reclustered within minutes. Munc18-1 reclustering was independent of syntaxin-1, but required calcium influx and protein kinase C (PKC) activity. Importantly, a PKC-insensitive Munc18-1 mutant did not recluster. We show that synaptic Munc18-1 levels correlate with synaptic strength, and that synapses that recruit more Munc18-1 after stimulation have a larger releasable vesicle pool. Hence, PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity.


Assuntos
Proteínas Munc18/análise , Terminações Pré-Sinápticas/metabolismo , Proteína Quinase C/metabolismo , Animais , Axônios/metabolismo , Eletrofisiologia , Técnicas de Introdução de Genes , Camundongos , Proteínas Munc18/metabolismo , Transporte Proteico , Sinapses/metabolismo , Sintaxina 1/metabolismo
9.
Int J Neuropsychopharmacol ; 17(4): 651-73, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24229490

RESUMO

Autism spectrum disorders (ASD) are a heterogeneous group of disorders which have complex behavioural phenotypes. Although ASD is a highly heritable neuropsychiatric disorder, genetic research alone has not provided a profound understanding of the underlying causes. Recent developments using biochemical tools such as transcriptomics, proteomics and cellular models, will pave the way to gain new insights into the underlying pathological pathways. This review addresses the state-of-the-art in the search for molecular biomarkers for ASD. In particular, the most important findings in the biochemical field are highlighted and the need for establishing streamlined interaction between behavioural studies, genetics and proteomics is stressed. Eventually, these approaches will lead to suitable translational ASD models and, therefore, a better disease understanding which may facilitate novel drug discovery efforts in this challenging field.


Assuntos
Biomarcadores , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Proteômica , Transtornos Globais do Desenvolvimento Infantil/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...