Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(5): e0005424, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38712970

RESUMO

Cutibacterium are part of the human skin microbiota and are opportunistic microorganisms that become pathogenic in immunodeficient states. These lipophilic bacteria willingly inhabit areas of the skin where sebaceous glands are abundant; hence, there is a need to thoroughly understand their metabolism. Lipids are no longer considered only structural elements but also serve as signaling molecules and may have antigenic properties. Lipidomics remains a major research challenge, mainly due to the diverse physicochemical properties of lipids. Therefore, this study aimed to perform a large comparative lipidomic analysis of eight representatives of the Cutibacterium genus, including four phylotypes of C. acnes and two strains of C. granulosum, C. avidum, and C. namnetense. Lipidomic analysis was performed by liquid chromatography‒mass spectrometry (LC-MS) in both positive and negative ion modes, allowing the detection of the widest range of metabolites. Fatty acid analysis by gas chromatography‒mass spectrometry (GC-MS) corroborated the lipidomic data. As a result, 128 lipids were identified, among which it was possible to select marker compounds, some of which were characteristic even of individual C. acnes phylotypes. These include phosphatidylcholine PC 30:0, sphingomyelins (SM 33:1, SM 35:1), and phosphatidylglycerol with an alkyl ether substituent PG O-32:0. Moreover, cardiolipins and fatty acid amides were identified in Cutibacterium spp. for the first time. This comparative characterization of the cutibacterial lipidome with the search for specific molecular markers reveals its diagnostic potential for clinical microbiology. IMPORTANCE: Cutibacterium (previously Propionibacterium) represents an important part of the human skin microbiota, and its role in clinical microbiology is growing due to opportunistic infections. Lipidomics, apart from protein profiling, has the potential to prove to be a useful tool for defining the cellular fingerprint, allowing for precise differentiation of microorganisms. In this work, we presented a comparative analysis of lipids found in eight strains of the genus Cutibacterium, including a few C. acnes phylotypes. Our results are one of the first large-scale comprehensive studies regarding the bacterial lipidome, which also enabled the selection of C. acnes phylotype-specific lipid markers. The increased role of lipids not only as structural components but also as diagnostic markers or potential antigens has led to new lipid markers that can be used as diagnostic tools for clinical microbiology. We believe that the findings in our paper will appeal to a wide range of researchers.


Assuntos
Lipidômica , Propionibacteriaceae , Humanos , Propionibacteriaceae/classificação , Propionibacteriaceae/química , Propionibacteriaceae/isolamento & purificação , Propionibacteriaceae/genética , Cromatografia Líquida , Lipídeos/análise , Lipídeos/química , Pele/microbiologia , Pele/química , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Graxos/análise , Ácidos Graxos/química , Espectrometria de Massas
2.
Adv Clin Exp Med ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506416

RESUMO

BACKGROUND: Recent studies have indicated that the skin lymphatic system and interstitium may play a role in the pathophysiology of arterial hypertension (AH). OBJECTIVES: We aimed to determine whether the set of pathway parameters described previously in rodents would allow for the distinction between hypertensive and normotensive patients. MATERIAL AND METHODS: Molecular and histopathological parameters from the skin and blood of patients with AH (AH group, n = 53), resistant AH (RAH group, n = 32) and control (C group, n = 45) were used, and a statistical multivariate bootstrap methodology combining partial least squares-discriminant analysis (PLS-DA) and selectivity ratio (SR) were applied. RESULTS: The C vs RAH model presented the best prediction performance (AUC test = 0.90) and had a sensitivity and specificity of 73.68% and 83.33%, respectively. However, the parameters selected for the C vs AH group model were the most important for the pathway described in the rodent model, i.e., greater density of the skin lymphatic vessels (D2-40 expression) and greater number of macrophages (CD68 expression), higher expression of the messenger ribonucleic acid (mRNA) of nuclear factor of activated T cells 5 (NFAT5), vascular endothelial growth factor C (VEGFC) and podoplanin (PDPN) in the skin, greater concentration of hyaluronic acid (HA) in the skin, and lower serum concentration of VEGF-C. CONCLUSIONS: Our study suggests that the NFAT5/VEGF-C/lymphangiogenesis pathway, previously described in rodent studies, may also be present in human HA. Further experiments are needed to confirm our findings.

3.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834239

RESUMO

Sperm maturation in the epididymis is based on interactions with proteins from epididymal fluid (EF). The aim of the study was to profile canine EF proteome and investigate correlations between EF protein content and epididymal spermatozoa (ES) motion parameters. Twenty-three male dogs were divided into two groups: good sperm motility (GSM) and poor sperm motility (PSM). The total motility and progressive motility differed significantly (p = 0.031; p < 0.001, respectively) between the GSM group and the PSM group. The semen samples were centrifuged to separate the EF apart from the ES. The canine EF proteins were analyzed using nano-liquid chromatography, which was coupled with quadrupole time-of-flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools for the first time. A total of 915 proteins were identified (GSM-506; PSM-409, respectively). UniProt identification resulted in six unique proteins (UPs) in the GSM group of dogs and four UPs in the PSM group. A semi-quantitative analysis showed a higher abundance (p < 0.05) of four differentially expressed proteins in the GSM group (ALB, CRISP2, LCNL1, PTGDS). Motility-dependent variations were detected in the EF proteome and were related to important metabolic pathways, which might suggest that several proteins could be potential ES motility biomarkers.


Assuntos
Epididimo , Motilidade dos Espermatozoides , Masculino , Cães , Animais , Epididimo/metabolismo , Sêmen/metabolismo , Proteoma/metabolismo , Espermatozoides/metabolismo
4.
Adv Med Sci ; 68(2): 276-289, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37639949

RESUMO

PURPOSE: Recent studies, conducted mainly on the rodent model, have demonstrated that regulatory pathway in the skin provided by glycosaminoglycans, nuclear factor of activated T cells 5 (NFAT5), vascular endothelial growth factor C (VEGF-C) and process of lymphangiogenesis may play an important role in extrarenal regulation of sodium (Na+) balance, body water volume, and blood pressure. We aimed to investigate the concentrations and relations among the main factors of this pathway in human skin to confirm that this regulatory axis also exists in humans. PATIENTS AND METHODS: Skin specimens from patients diagnosed with arterial hypertension and from control group were histologically and molecularly examined. RESULTS: The primary hypertensive and control groups did not differ in Na+ â€‹concentrations in the skin. However, the patients with hypertension and higher skin Na+ concentration had significantly greater density of skin lymphatic vessels. Higher skin Na+concentration was associated with higher skin water content. In turn, skin water content correlated with factors associated with lymphangiogenesis, i.e. NFAT5, VEGF-C, and podoplanin (PDPN) mRNA expression in the skin. The strong mutual pairwise correlations of the expressions of NFAT5, VEGF-C, vascular endothelial growth factor D (VEGF-D) and PDPN mRNA were noted in the skin in all of the studied groups. CONCLUSIONS: Our study confirms that skin interstitium and the lymphatic system may be important players in the pathophysiology of arterial hypertension in humans. Based on the results of our study and existing literature in this field, we propose the hypothetical model which might explain the phenomenon of salt-sensitivity.


Assuntos
Hipertensão , Vasos Linfáticos , Humanos , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Sódio , Fator D de Crescimento do Endotélio Vascular , Hipertensão/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , RNA Mensageiro , Água
5.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292941

RESUMO

Accessions of one plant species may show significantly different levels of susceptibility to stresses. The Arabidopsis thaliana accessions Col-0 and C24 differ significantly in their resistance to the pathogen Pseudomonas syringae pv. tomato (Pst). To help unravel the underlying mechanisms contributing to this naturally occurring variance in resistance to Pst, we analyzed changes in transcripts and compounds from primary and secondary metabolism of Col-0 and C24 at different time points after infection with Pst. Our results show that the differences in the resistance of Col-0 and C24 mainly involve mechanisms of salicylic-acid-dependent systemic acquired resistance, while responses of jasmonic-acid-dependent mechanisms are shared between the two accessions. In addition, arginine metabolism and differential activity of the biosynthesis pathways of aliphatic glucosinolates and indole glucosinolates may also contribute to the resistance. Thus, this study highlights the difference in the defense response strategies utilized by different genotypes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Transcriptoma , Glucosinolatos/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Pseudomonas syringae/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Indóis/farmacologia , Indóis/metabolismo , Arginina/metabolismo , Resistência à Doença/genética , Ácido Salicílico/metabolismo
6.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35682955

RESUMO

Skin cancer (melanoma and non-melanoma) is the most frequent type of malignancy in the Caucasian population. Photodynamic therapy (PDT) as an interesting and unique strategy may potentially boost standard therapeutic approaches. In the present study, the potential of emodin and aloe-emodin as photosensitizers in photodynamic therapy has been investigated. The conducted research presents for the first-time comparison of the phototoxic and anti-cancerous effects of emodin and aloe-emodin on skin cancer cell lines, including SCC-25 representing cutaneous squamous cell carcinoma, MUG-Mel2 representing a melanoma cell line, and normal human keratinocytes HaCaT representing control normal skin cells. To assess the effectiveness of emodin and aloe-emodin as a photosensitizer in PDT on different skin cell lines, we performed MTT assay measuring cytotoxicity of natural compounds, cellular uptake, apoptosis with flow cytometry, and a wound-healing assay. Although emodin and aloe-emodin are isomers and differ only in the position of one hydroxyl group, our phototoxicity and apoptosis detection results show that both substances affect skin cancer cells (SSC-25 squamous cell carcinoma and MUG-Mel2 melanoma) and normal keratinocytes (HaCaT cell line) in other ways. In conclusion, our study provides evidence suggesting that emodin and aloe-emodin mediated PDT exhibits the potential for clinical development as a new effective and safe photosensitizer to treat skin cancer.


Assuntos
Aloe , Carcinoma de Células Escamosas , Emodina , Melanoma , Fotoquimioterapia , Neoplasias Cutâneas , Antraquinonas/farmacologia , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Emodina/farmacologia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias Cutâneas/tratamento farmacológico
7.
Animals (Basel) ; 12(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35327169

RESUMO

This study was provided for proteomic analysis of intracellular and membrane-associated fractions of canine (Canis lupus familiaris) epididymal spermatozoa and additionally to find optimal sonication parameters for the epididymal sperm morphological structure separation and sperm protein isolation. Sperm samples were collected from 15 dogs. Sperm protein fractions: intracellular (SIPs) and membrane-associated (SMAPs) were isolated. After sonication, sperm morphology was evaluated using Spermac Stain™. The sperm protein fractions were analyzed using gel electrophoresis (SDS-PAGE) and nanoliquid chromatography coupled to quadrupole time-of-flight mass spectrometry (NanoLC-Q-TOF/MS). UniProt database-supported identification resulted in 42 proteins identified in the SIPs and 153 proteins in the SMAPs. Differentially abundant proteins (DAPs) were found in SIPs and SMAPs. Based on a gene ontology analysis, the dominant molecular functions of SIPs were catalytic activity (50%) and binding (28%). Hydrolase activity (33%) and transferase activity (21%) functions were dominant for SMAPs. Bioinformatic analysis of SIPs and SMAPs showed their participation in important metabolic pathways in epididymal sperm, which may suggest their potential as sperm quality biomarkers. The use of sonication 150 W, 10 min, may be recommended for the separation of dog epididymal sperm heads, tails, acrosomes and the protein isolation.

8.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445800

RESUMO

Inflammatory bowel disease is a chronic, idiopathic and complex condition, which most often manifests itself in the form of ulcerative colitis or Crohn's disease. Both forms are associated with dysregulation of the mucosal immune system, compromised intestinal epithelial barrier, and dysbiosis of the gut microbiome. It has been observed for a long time that bile acids are involved in inflammatory disorders, and recent studies show their significant physiological role, reaching far beyond being emulsifiers helping in digestion of lipids. Bile acids are also signaling molecules, which act, among other things, on lipid metabolism and immune responses, through several nuclear and membrane receptors in hepatocytes, enterocytes and cells of the immune system. Gut microbiota homeostasis also seems to be affected, directly and indirectly, by bile acid metabolism and signaling. This review summarizes recent advances in the field of bile acid signaling, studies of inflamed gut microbiome, and the therapeutic potential of bile acids in the context of inflammatory bowel disease.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Transdução de Sinais/fisiologia , Animais , Microbioma Gastrointestinal/fisiologia , Humanos , Sistema Imunitário/metabolismo
9.
J Clin Med ; 10(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069684

RESUMO

Achieving mucosal healing in patients with inflammatory bowel disease is related to a higher incidence of sustained clinical remission and it translates to lower rates of hospitalisation and surgery. The assessment methods of disease activity and response to therapy are limited and mainly rely on colonoscopy. This meta-analysis reviews the effectiveness of using faecal calprotectin as a marker for mucosal healing in inflammatory bowel disease. Two meta-analyses were conducted in parallel. The analysis on the use of faecal calprotectin in monitoring mucosal healing in colonic Crohn's disease is based on 16 publications (17 studies). The data set for diagnostic values of faecal calprotectin in ulcerative colitis is composed of 35 original publications (total 49 studies). The DOR for the use of faecal calprotectin in Crohn's disease is estimated to be 11.20 and the area under the sROCis 0.829. In cases of ulcerative colitis, the DOR is 14.48, while the AUC sROC is 0.858. Heterogeneity of the studies was moderatetosubstantial. Collected data show overall good sensitivity and specificity of the faecal calprotectin test, as well as a good DOR. Thus, monitoring of mucosal healing with a non-invasive faecal calprotectin test may represent an attractive option for physicians and patients with inflammatory bowel disease.

10.
Adv Exp Med Biol ; 1290: 9-49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33559853

RESUMO

Interleukin (IL)-7 plays an important immunoregulatory role in different types of cells. Therefore, it attracts researcher's attention, but despite the fact, many aspects of its modulatory action, as well as other functionalities, are still poorly understood. The review summarizes current knowledge on the interleukin-7 and its signaling cascade in context of cancer development. Moreover, it provides a cancer-type focused description of the involvement of IL-7 in solid tumors, as well as hematological malignancies.The interleukin has been discovered as a growth factor crucial for the early lymphocyte development and supporting the growth of malignant cells in certain leukemias and lymphomas. Therefore, its targeting has been explored as a treatment modality in hematological malignancies, while the unique ability to expand lymphocyte populations selectively and without hyperinflammation has been used in experimental immunotherapies in patients with lymphopenia. Ever since the early research demonstrated a reduced growth of solid tumors in the presence of IL-7, the interleukin application in boosting up the anticancer immunity has been investigated. However, a growing body of evidence indicative of IL-7 upregulation in carcinomas, facilitating tumor growth and metastasis and aiding drug-resistance, is accumulating. It therefore becomes increasingly apparent that the response to the IL-7 stimulus strongly depends on cell type, their developmental stage, and microenvironmental context. The interleukin exerts its regulatory action mainly through phosphorylation events in JAK/STAT and PI3K/Akt pathways, while the significance of MAPK pathway seems to be limited to solid tumors. Given the unwavering interest in IL-7 application in immunotherapy, a better understanding of interleukin role, source in tumor microenvironment, and signaling pathways, as well as the identification of cells that are likely to respond should be a research priority.


Assuntos
Fosfatidilinositol 3-Quinases , Microambiente Tumoral , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-7 , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
11.
Diagnostics (Basel) ; 10(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824619

RESUMO

Precise diagnostic biomarker in inflammatory bowel diseases (IBD) is still missing. We conducted a comprehensive overview of oxidative stress markers (OSMs) as potential diagnostic, differential, progression, and prognostic markers in IBD. A Pubmed, Web of Knowledge, and Scopus search of original articles on OSMs in IBD, published between January 2000 and April 2020, was conducted. Out of 874 articles, 79 eligible studies were identified and used to prepare the interpretative synthesis. Antioxidants followed by lipid peroxidation markers were the most popular and markers of oxidative DNA damage the least popular. There was a disparity in the number of retrieved papers evaluating biomarkers in the adult and pediatric population (n = 6). Of the reviewed OSMs, a promising performance has been reported for serum total antioxidant status as a mucosal healing marker, mucosal 8-OHdG as a progression marker, and for multi-analyte panels of lipid peroxidation products assessed non-invasively in breath as diagnostic and differential markers in the pediatric population. Bilirubin, in turn, was the only validated marker. There is a desperate need for non-invasive biomarkers in IBD which, however, will not be met in the near future by oxidative stress markers as they are promising but mostly at the early research phase of discovery.

12.
Theriogenology ; 141: 68-81, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518731

RESUMO

The binding of seminal plasma (SP) proteins by spermatozoa plays an important role in the regulation of sperm epididymal maturation, motility gaining in female reproductive tracts and sperm-egg interaction. The aim of the study was to analyze the SP and sperm extracts proteome of cat (Felis catus) semen. The seminal plasma and spermatozoa were obtained by urethra catheterization from 10 male cats. Proteins were extracted using RIPA buffer and separated by electrophoresis (SDS-PAGE). The gels were analyzed using MultiAnalyst software. The proteins were subsequently analyzed using NanoUPLC-Q-TOF/MS. UniProt database-supported identification resulted in 106 proteins identified in the cat SP and 98 proteins in the extracts of spermatozoa. Based on a gene ontology analysis, dominant molecular functions of feline SP proteins were binding, catalytic, and antioxidant activity (56%, 33%, and 11% of cases, respectively). The molecular functions of sperm extracts proteins were mainly involved in catalytic activity (41%) and binding (23%). The proteins present in both, the SP and spermatozoa's extracts, were: serum albumin (ALB), semenogelin 2 (SEMG 2), clusterin (CLU), lactoferrin (LTF), prostatic acid phosphatase (ACPP), prolactin inducible protein (PIP), negative elongation factor E (NELF-E) and ectonucleotide pyrophosphatase (ENPP3). Protein-protein interactions analysis showed significant connection for 12 proteins in the cat semen. The seminal plasma proteins which, with high probability score, participate in important metabolic pathways are: glutathione peroxidases (GPx5 and 6), prostatic acid phosphatase (ACPP), ß-hexosaminidase (HEXB), polymeric immunoglobulin receptor (pIgR) and serpin family F member 1 (SERPINF1). For sperm protein extracts it were: pyruvate dehydrogenase (PDHB), succinate-CoA-ligase (SUCLA2), malate dehydrogenase (MDH2), ATP synthase F1 subunit alpha (ATP5F1A) and tubulin beta (TUBB).


Assuntos
Gatos , Proteoma/metabolismo , Análise do Sêmen/veterinária , Sêmen/fisiologia , Cateterismo Urinário/veterinária , Animais , Regulação da Expressão Gênica , Masculino , Transdução de Sinais , Espermatozoides/metabolismo
13.
PLoS One ; 10(10): e0138965, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26440112

RESUMO

Diatoms are very efficient in their use of available nutrients. Changes in nutrient availability influence the metabolism and the composition of the cell constituents. Since diatoms are valuable candidates to search for oil producing algae, measurements of diatom-produced compounds can be very useful for biotechnology. In order to explore the diversity of lipophilic compounds produced by diatoms, we describe the results from an analysis of 13 diatom strains. With the help of a lipidomics platform, which combines an UPLC separation with a high resolution/high mass accuracy mass spectrometer, we were able to measure and annotate 142 lipid species. Out of these, 32 were present in all 13 cultures. The annotated lipid features belong to six classes of glycerolipids. The data obtained from the measurements were used to create lipidomic profiles. The metabolomic overview of analysed cultures is amended by the measurement of 96 polar compounds. To further increase the lipid diversity and gain insight into metabolomic adaptation to nitrogen limitation, diatoms were cultured in media with high and low concentrations of nitrate. The growth in nitrogen-deplete or nitrogen-replete conditions affects metabolite accumulation but has no major influence on the species-specific metabolomic profile. Thus, the genetic component is stronger in determining metabolic patterns than nitrogen levels. Therefore, lipid profiling is powerful enough to be used as a molecular fingerprint for diatom cultures. Furthermore, an increase of triacylglycerol (TAG) accumulation was observed in low nitrogen samples, although this trend was not consistent across all 13 diatom strains. Overall, our results expand the current understanding of metabolomics diversity in diatoms and confirm their potential value for producing lipids for either bioenergy or as feed stock.


Assuntos
Diatomáceas/metabolismo , Metabolômica , Nitratos/metabolismo , Adaptação Fisiológica , Diatomáceas/fisiologia , Nitrogênio/metabolismo , Triglicerídeos/metabolismo
14.
Springerplus ; 4: 391, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26251775

RESUMO

Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. The sulfate assimilation and methionine synthesis pathways provide S-containing amino acids for the synthesis of proteins and a range of metabolites such as dimethylsulfoniopropionate. To obtain an insight into the localization and organization of the sulfur metabolism pathways we surveyed the genome of Thalassiosira pseudonana-a model organism for diatom research. We have identified and annotated genes for enzymes involved in respective pathways. Protein localization was predicted using similarities to known signal peptide motifs. We performed detailed phylogenetic analyses of enzymes involved in sulfate uptake/reduction and methionine metabolism. Moreover, we have found in up-stream sequences of studied diatoms methionine biosynthesis genes a conserved motif, which shows similarity to the Met31, a cis-motif regulating expression of methionine biosynthesis genes in yeast.

15.
Plant J ; 81(3): 529-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25440443

RESUMO

Quantification of fatty acids has been crucial to elucidate lipid biosynthesis pathways in plants. To date, fatty acid identification and quantification has relied mainly on gas chromatography (GC) coupled to flame ionization detection (FID) or mass spectrometry (MS), which requires the derivatization of samples and the use of chemical standards for annotation. Here we present an alternative method based on a simple procedure for the hydrolysis of lipids, so that fatty acids can be quantified by liquid chromatography mass spectrometry (LC-MS) analysis. Proper peak annotation of the fatty acids in the LC-MS-based methods has been achieved by LC-MS measurements of authentic standard compounds and elemental formula annotation supported by (13)C isotope-labeled Arabidopsis. As a proof of concept, we have compared the analysis by LC-MS and GC-FID of two previously characterized Arabidopsis thaliana knock-out mutants for FAD6 and FAD7 desaturase genes. These results are discussed in light of lipidomic profiles obtained from the same samples. In addition, we performed untargeted LC-MS analysis to determine the fatty acid content of two diatom species. Our results indicate that both LC-MS and GC-FID analyses are comparable, but that because of higher sensitivity and selectivity the LC-MS-based method allows for a broader coverage and determination of novel fatty acids.


Assuntos
Cromatografia Líquida/métodos , Ácidos Graxos/química , Metabolismo dos Lipídeos , Espectrometria de Massas/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatografia Gasosa , Ácidos Graxos Dessaturases/genética , Ionização de Chama , Técnicas de Inativação de Genes
16.
PLoS One ; 8(6): e67340, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799147

RESUMO

This report describes the metabolic and lipidomic profiling of 97 low-molecular weight compounds from the primary metabolism and 124 lipid compounds of the diatom Thalassiosira pseudonana. The metabolic profiles were created for diatoms perturbed for 24 hours with four different treatments: (I) removal of nitrogen, (II) lower iron concentration, (III) addition of sea salt, (IV) addition of carbonate to their growth media. Our results show that as early as 24 hours after nitrogen depletion significant qualitative and quantitative change in lipid composition as well as in the primary metabolism of Thalassiosira pseudonana occurs. So we can observe the accumulation of several storage lipids, namely triacylglycerides, and TCA cycle intermediates, of which citric acid increases more than 10-fold. These changes are positively correlated with expression of TCA enzymes genes. Next to the TCA cycle intermediates and storage lipid changes, we have observed decrease in N-containing lipids and primary metabolites such as amino acids. As a measure of counteracting nitrogen starvation, we have observed elevated expression levels of nitrogen uptake and amino acid biosynthetic genes. This indicates that diatoms can fast and efficiently adapt to changing environment by altering the metabolic fluxes and metabolite abundances. Especially, the accumulation of proline and the decrease of dimethylsulfoniopropionate suggest that the proline is the main osmoprotectant for the diatom in nitrogen rich conditions.


Assuntos
Diatomáceas/fisiologia , Adaptação Fisiológica , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico , Meios de Cultura/química , Expressão Gênica , Ferro/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Metabolismo dos Lipídeos , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Metaboloma , Nitrogênio/metabolismo , Osmorregulação , Prolina/metabolismo , Sais/metabolismo , Bicarbonato de Sódio/metabolismo , Compostos de Sulfônio/metabolismo
17.
Amino Acids ; 44(5): 1253-65, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23354278

RESUMO

Diatoms are unicellular algae responsible for approximately 20 % of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. In the last years the interest on unicellular algae increased. On the one hand assessments suggest that diatom-mediated export production can influence climate change through uptake and sequestration of atmospheric CO2. On the other hand diatoms are in focus because they are discussed as potential producer of biofuels. To follow the one or other idea it is necessary to investigate the diatoms biochemistry in order to understand the cellular regulatory mechanisms. The sulfur assimilation and methionine synthesis pathways provide S-containing amino acids for the synthesis of proteins and a range of metabolites such as dimethylsulfoniopropionate (DMSP) in order to provide basic metabolic precursors needed for the diatoms metabolism. To obtain an insight into the localization and organization of the sulfur metabolism pathways, the genome of Thalassiosira pseudonana-a model organism for diatom research-might help to understand the fundamental questions on adaptive responses of diatoms to dynamic environmental conditions such as nutrient availability in a broader context.


Assuntos
Diatomáceas/genética , Sulfatos/metabolismo , Cisteína Sintase/genética , Diatomáceas/metabolismo , Proteínas de Membrana Transportadoras/genética , Redes e Vias Metabólicas/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Filogenia , Serina O-Acetiltransferase/genética , Sulfato Adenililtransferase/genética
18.
Metabolites ; 3(2): 294-311, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24957993

RESUMO

Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...