Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecology ; 98(3): 632-646, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27935640

RESUMO

Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.


Assuntos
Ecologia , Modelos Teóricos
2.
Ecology ; 97(7): 1759-1770, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27859174

RESUMO

While multi-species occupancy models (MSOMs) are emerging as a popular method for analyzing biodiversity data, formal checking and validation approaches for this class of models have lagged behind. Concurrent with the rise in application of MSOMs among ecologists, a quiet regime shift is occurring in Bayesian statistics where predictive model comparison approaches are experiencing a resurgence. Unlike single-species occupancy models that use integrated likelihoods, MSOMs are usually couched in a Bayesian framework and contain multiple levels. Standard model checking and selection methods are often unreliable in this setting and there is only limited guidance in the ecological literature for this class of models. We examined several different contemporary Bayesian hierarchical approaches for checking and validating MSOMs and applied these methods to a freshwater aquatic study system in Colorado, USA, to better understand the diversity and distributions of plains fishes. Our findings indicated distinct differences among model selection approaches, with cross-validation techniques performing the best in terms of prediction.


Assuntos
Biodiversidade , Peixes/fisiologia , Modelos Estatísticos , Animais , Teorema de Bayes , Colorado , Conservação dos Recursos Naturais , Ecossistema , Peixes/classificação
3.
Ecology ; 97(1): 194-204, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008788

RESUMO

The dynamic, multi-season occupancy model framework has become a popular tool for modeling open populations with occupancies that change over time through local colonizations and extinctions. However, few versions of the model relate these probabilities to the occupancies of neighboring sites or patches. We present a modeling framework that incorporates this information and is capable of describing a wide variety of spatiotemporal colonization and extinction processes. A key feature of the model is that it is based on a simple set of small-scale rules describing how the process evolves. The result is a dynamic process that can account for complicated large-scale features. In our model, a site is more likely to be colonized if more of its neighbors were previously occupied and if it provides more appealing environmental characteristics than its neighboring sites. Additionally, a site without occupied neighbors may also become colonized through the inclusion of a long-distance dispersal process. Although similar model specifications have been developed for epidemiological applications, ours formally accounts for detectability using the well-known occupancy modeling framework. After demonstrating the viability and potential of this new form of dynamic occupancy model in a simulation study, we use it to obtain inference for the ongoing Common Myna (Acridotheres tristis) invasion in South Africa. Our results suggest that the Common Myna continues to enlarge its distribution and its spread via short distance movement, rather than long-distance dispersal. Overall, this new modeling framework provides a powerful tool for managers examining the drivers of colonization including short- vs. long-distance dispersal, habitat quality, and distance from source populations.


Assuntos
Ecossistema , Espécies Introduzidas , Modelos Biológicos , Estorninhos/fisiologia , Distribuição Animal , Animais , África do Sul
4.
PLoS One ; 9(10): e109907, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329312

RESUMO

Skates (Rajiformes: Rajoidei) are common mesopredators in marine benthic communities. The spatial associations of individual species and the structure of assemblages are of considerable importance for effective monitoring and management of exploited skate populations. This study investigated the spatial associations of eastern North Pacific (ENP) skates in continental shelf and upper continental slope waters of two regions: central California and the western Gulf of Alaska. Long-term survey data were analyzed using GIS/spatial analysis techniques and regression models to determine distribution (by depth, temperature, and latitude/longitude) and relative abundance of the dominant species in each region. Submersible video data were incorporated for California to facilitate habitat association analysis. We addressed three main questions: 1) Are there regions of differential importance to skates?, 2) Are ENP skate assemblages spatially segregated?, and 3) When skates co-occur, do they differ in size? Skate populations were highly clustered in both regions, on scales of 10s of kilometers; however, high-density regions (i.e., hot spots) were segregated among species. Skate densities and frequencies of occurrence were substantially lower in Alaska as compared to California. Although skates are generally found on soft sediment habitats, Raja rhina exhibited the strongest association with mixed substrates, and R. stellulata catches were greatest on rocky reefs. Size segregation was evident in regions where species overlapped substantially in geographic and depth distribution (e.g., R. rhina and Bathyraja kincaidii off California; B. aleutica and B. interrupta in the Gulf of Alaska). Spatial niche differentiation in skates appears to be more pronounced than previously reported.


Assuntos
Rajidae , Análise Espacial , Animais , Tamanho Corporal , Ecossistema , Oceano Pacífico , Análise de Regressão , Rajidae/classificação , Rajidae/crescimento & desenvolvimento
5.
Ecol Appl ; 24(2): 363-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689147

RESUMO

Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais , Demografia , Modelos Biológicos , Animais , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA