Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 124: 663-672, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28823903

RESUMO

To properly estimate and manage pesticide occurrence in urban rivers, it is essential, but often highly challenging, to identify the key pesticide transport pathways in association to the main sources. This study examined the concentration-discharge hysteresis behaviour (hysteresis analysis) for three pesticides and the parent-metabolite concentration dynamics for two metabolites at sites with different levels of urban influence in a mixed land use catchment (25 km2) within the Swiss Greifensee area, aiming to identify the dominant pesticide transport pathways. Combining an adapted hysteresis classification framework with prior knowledge of the field conditions and pesticide usage, we demonstrated the possibility of using hysteresis analysis to qualitatively infer the dominant pesticide transport pathway in mixed land-use catchments. The analysis showed that hysteresis types, and therefore the dominant transport pathway, vary among pesticides, sites and rainfall events. Hysteresis loops mostly correspond to dominant transport by flow components with intermediate response time, although pesticide sources indicate that fast transport pathways are responsible in most cases (e.g. urban runoff and combined sewer overflows). The discrepancy suggests the fast transport pathways can be slowed down due to catchment storages, such as topographic depressions in agricultural areas, a wastewater treatment plant (WWTP) and other artificial storage units (e.g. retention basins) in urban areas. Moreover, the WWTP was identified as an important factor modifying the parent-metabolite concentration dynamics during rainfall events. To properly predict and manage pesticide occurrence in catchments of mixed land uses, the hydrological delaying effect and chemical processes within the artificial structures need to be accounted for, in addition to the catchment hydrology and the diversity of pesticide sources. This study demonstrates that in catchments with diverse pesticide sources and complex transport mechanisms, the adapted hysteresis analysis can help to improve our understanding on pesticide transport behaviours and provide a basis for effective management strategies.


Assuntos
Agricultura , Praguicidas/química , Poluentes Químicos da Água/química , Monitoramento Ambiental , Rios
2.
J Environ Manage ; 193: 360-372, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237846

RESUMO

Water authorities and drinking water companies are challenged with the question if, where and how to abate contaminants of emerging concern in the urban water cycle. The most effective strategy under given conditions is often unclear to these stakeholders as it requires insight into several aspects of the contaminants such as sources, properties, and mitigation options. Furthermore the various parties in the urban water cycle are not always aware of each other's requirements and priorities. Processes to set priorities and come to agreements are lacking, hampering the articulation and implementation of possible solutions. To support decision makers with this task, a decision support system was developed to serve as a point of departure for getting the relevant stakeholders together and finding common ground. The decision support system was iteratively developed in stages. Stakeholders were interviewed and a decision support system prototype developed. Subsequently, this prototype was evaluated by the stakeholders and adjusted accordingly. The iterative process lead to a final system focused on the management of contaminants of emerging concern within the urban water cycle, from wastewater, surface water and groundwater to drinking water, that suggests mitigation methods beyond technical solutions. Possible wastewater and drinking water treatment techniques in combination with decentralised and non-technical methods were taken into account in an integrated way. The system contains background information on contaminants of emerging concern such as physical/chemical characteristics, toxicity and legislative frameworks, water cycle entrance pathways and a database with associated possible mitigation methods. Monitoring data can be uploaded to assess environmental and human health risks in a specific water system. The developed system was received with great interest by potential users, and implemented in an international water cycle network.


Assuntos
Qualidade da Água , Água/química , Monitoramento Ambiental , Humanos , Poluentes Químicos da Água/química , Purificação da Água
3.
Environ Sci Process Impacts ; 17(12): 2034-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26487336

RESUMO

Undoubtedly, the most important advance in the environmental regulatory monitoring of elements of the last decade is the widespread introduction of ICP-mass spectrometry (ICP-MS) due to standards developed by the European Committee for Standardization. The versatility of ICP-MS units as a tool for the determination of major, minor and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Ti, V and Zn) in surface water, groundwater, river sediment, topsoil, subsoil, fine particulates and atmospheric deposition is illustrated in this paper. Ranges of background concentrations for major, minor and trace elements obtained from a regional case study (Flanders, Belgium) are summarized for all of these environmental compartments and discussed in the context of a harmonized implementation of European regulatory monitoring requirements. The results were derived from monitoring programs in support of EU environmental quality directives and were based on a selection of (non-polluted) background locations. Because of the availability of ICP-MS instruments nowadays, it can be argued that the main hindrance for meeting the European environmental monitoring requirements is no longer the technical feasibility of analysis at these concentration levels, but rather (i) potential contamination during sampling and analysis, (ii) too limited implementation of quality control programs, validating the routinely applied methods (including sampling and low level verification) and (iii) lack of harmonization in reporting of the chemical environmental status between the individual member states.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Espectrofotometria Atômica , Oligoelementos/análise , Monitoramento Ambiental/normas , União Europeia , Padrões de Referência
4.
Sci Total Environ ; 517: 207-14, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25727676

RESUMO

Urban runoff can be a significant source of pesticides in urban streams. However, quantification of this source has been difficult because pesticide use by urban residents (e.g., on pavements or in gardens) is often unknown, particularly at the scale of a residential catchment. Proper quantification and characterization of pesticide loss via urban runoff require sound information on the use and occurrence of pesticides at hydrologically-relevant spatial scales, involving various hydrological conditions. We conducted a monitoring study in a residential area (9.5 ha, Flanders, Belgium) to investigate the use and loss of a widely-used herbicide (glyphosate) and its major degradation product (aminomethylphosphonic acid, AMPA). The study covered 13 rainfall events over 67 days. Overall, less than 0.5% of glyphosate applied was recovered from the storm drain outflow in the catchment. Maximum detected concentrations were 6.1 µg/L and 5.8 µg/L for glyphosate and AMPA, respectively, both of which are below the predicted no-effect concentration for surface water proposed by the Flemish environmental agency (10 µg/L), but are above the EU drinking water standard (0.1 µg/L). The measured concentrations and percentage loss rates can be attributed partially to the strong sorption capacity of glyphosate and low runoff potential in the study area. However, glyphosate loss varied considerably among rainfall events and event load of glyphosate mass was mainly controlled by rainfall amount, according to further statistical analyses. To obtain urban pesticide management insights, robust tools are required to investigate the loss and occurrence of pesticides influenced by various factors, particularly the hydrological and spatial factors.


Assuntos
Monitoramento Ambiental , Glicina/análogos & derivados , Herbicidas/análise , Poluentes Químicos da Água/análise , Bélgica , Glicina/análise , Chuva/química , Rios/química , Glifosato
5.
J Environ Qual ; 43(3): 859-68, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25602815

RESUMO

A spatially distributed model for leaching of Cd from the unsaturated zone was developed for the Belgian-Dutch transnational Kempen region. The model uses as input land-use maps, atmospheric deposition data, and soil data and is part of a larger regional model that simulates transport of Cd in soil, groundwater, and surface water. A new method for deriving deposition from multiple sites was validated using soil data in different wind directions. Leaching was calculated for the period 1890 to 2010 using a reconstruction of metal loads in the region. The model was able to reproduce spatial patterns of concentrations in soil and groundwater and predicted the concentration in shallow groundwater adequately well for the purpose of evaluating management options. For 42% of the data points, measurements and calculations were within the same concentration class. The model was used for forecasting under a reference scenario, an autonomous development scenario including climate change, and a scenario with implementation of remediation measures. The impact of autonomous development (under the most extreme scenario of climatic change) amounted to an increase of 10% in cumulative Cd flux after 100 yr as compared with the reference scenario. The impact of remediation measures was mainly local and is less pronounced (i.e., only 3% change in cumulative flux at the regional scale). The integrated model served as a tool to assist in developing management strategies and prioritization of remediation of the wide-spread heavy metal contamination in the region.

6.
Isotopes Environ Health Stud ; 49(1): 29-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22462557

RESUMO

In spite of increasing efforts to reduce nitrogen inputs into ground water from intensive agriculture, nitrate (NO(3)) remains one of the major pollutants of drinking-water resources worldwide, with NO(3) levels approaching the defined limit of 50 mg l(-1) in an increasing number of water bodies. Determining the source(s) of contamination in water is an important first step for improving its quality by emission control. The Life ISONITRATE project aimed at showing the benefit of a multi-isotope approach (δ(15)N and δ(18)O of NO(3), and δ(11)B), in addition to conventional hydrogeological analysis, to track the origin of NO(3) contamination in water. Based on land use and local knowledge, four distinct cases were studied: (1) natural soil NO(3), (2) natural denitrification, (3) single source of NO(3) pollution and (4) multiple sources of NO(3) pollution. Our results show the added value of combining isotope information, compared to knowledge based on local authorities' experience, land use and the 'classical' chemical approach, by efficiently identifying the number and type of NO(3) source(s) for each watershed studied.


Assuntos
Monitoramento Ambiental/métodos , Nitratos/análise , Poluentes Químicos da Água/análise , Isótopos/análise , Poluição da Água/prevenção & controle
7.
Environ Sci Technol ; 43(14): 5270-5, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19708352

RESUMO

This study explored the potential of eutrophic river sediment to attenuate the infiltration of chlorinated aliphatic hydrocarbon (CAH)-polluted groundwater discharging into the Zenne River near Brussels, Belgium. Active CAH biodegradation by reductive dechlorination in the sediment was suggested by a high dechlorination activity in microcosms containing sediment samples and the detection of dechlorination products in sediment pore water. A unique hydrogeochemical evaluation, including a delta2H and delta18O stable isotope approach, allowed to determine the contribution of different abiotic and biotic CAH attenuation processes and to delineate their spatial distribution inthe riverbed. Reductive dechlorination of the CAHs seemed to be the most widespread attenuation process, followed by dilution by unpolluted groundwater discharge and by surface water mixing. Although CAHs were never detected in the surface water, 26-28% of the investigated locations in the riverbed did not show CAH attenuation. We conclude that the riverbed sediments can attenuate infiltrating CAHs to a certain extent, but will probably not completely prevent CAHs to discharge from the contaminated groundwater into the Zenne River.


Assuntos
Eutrofização , Sedimentos Geológicos/química , Hidrocarbonetos Clorados/análise , Rios/química , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Bélgica , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...