Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Geroscience ; 45(4): 2643-2657, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37041313

RESUMO

Orthostatic hypotension (OH) is highly prevalent in older adults and associated with dizziness, falls, lower physical and cognitive function, cardiovascular disease, and mortality. OH is currently diagnosed in a clinical setting with single-time point cuff measurements. Continuous blood pressure (BP) devices can measure OH dynamics but cannot be used for daily life monitoring. Near-infrared spectroscopy (NIRS) has potential diagnostic value in measuring cerebral oxygenation continuously over a longer time period, but this needs further validation. This study aimed to compare NIRS-measured (cerebral) oxygenation with continuous BP and transcranial Doppler-measured cerebral blood velocity (CBv) during postural changes. This cross-sectional study included 41 participants between 20 and 88 years old. BP, CBv, and cerebral (long channels) and superficial (short channels) oxygenated hemoglobin (O2Hb) were measured continuously during various postural changes. Pearson correlations between BP, CBv, and O2Hb were calculated over curves and specific characteristics (maximum drop amplitude and recovery). BP and O2Hb only showed good curve-based correlations (0.58-0.75) in the initial 30 s after standing up. Early (30-40 s) and 1-min BP recovery associated significantly with O2Hb, but no consistent associations were found for maximum drop amplitude and late (60-175 s) recovery values. Associations between CBv and O2Hb were poor, but stronger for long-channel than short-channel measurements. BP associated well with NIRS-measured O2Hb in the first 30 s after postural change. Stronger associations for CBv with long-channel O2Hb suggest that long-channel NIRS specifically reflects cerebral blood flow during postural transitions, necessary to better understand the consequences of OH such as intolerance symptoms.


Assuntos
Hipotensão Ortostática , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Idoso , Idoso de 80 Anos ou mais , Pressão Sanguínea/fisiologia , Estudos Transversais , Hipotensão Ortostática/diagnóstico , Oxiemoglobinas
3.
Biosensors (Basel) ; 12(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551137

RESUMO

OBJECTIVE: Respiration is recognized as a systematic physiological interference in functional near-infrared spectroscopy (fNIRS). However, it remains unanswered as to whether it is possible to estimate the respiratory rate (RR) from such interference. Undoubtedly, RR estimation from fNIRS can provide complementary information that can be used alongside the cerebral activity analysis, e.g., sport studies. Thus, the objective of this paper is to propose a method for RR estimation from fNIRS. Our primary presumption is that changes in the baseline wander of oxygenated hemoglobin concentration (O2Hb) signal are related to RR. METHODS: fNIRS and respiratory signals were concurrently collected from subjects during controlled breathing tasks at a constant rate from 0.1 Hz to 0.4 Hz. Firstly, the signal quality index algorithm is employed to select the best O2Hb signal, and then a band-pass filter with cut-off frequencies from 0.05 to 2 Hz is used to remove very low- and high-frequency artifacts. Secondly, troughs of the filtered O2Hb signal are localized for synthesizing the baseline wander (S1) using cubic spline interpolation. Finally, the fast Fourier transform of the S1 signal is computed, and its dominant frequency is considered as RR. In this paper, two different datasets were employed, where the first one was used for the parameter adjustment of the proposed method, and the second one was solely used for testing. RESULTS: The low mean absolute error between the reference and estimated RRs for the first and second datasets (2.6 and 1.3 breaths per minute, respectively) indicates the feasibility of the proposed method for RR estimation from fNIRS. SIGNIFICANCE: This paper provides a novel view on the respiration interference as a source of complementary information in fNIRS.


Assuntos
Encéfalo , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Encéfalo/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Taxa Respiratória , Respiração , Algoritmos
4.
Philos Trans R Soc Lond B Biol Sci ; 376(1830): 20200224, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34121458

RESUMO

Sensory ecology and physiology of free-ranging animals is challenging to study but underpins our understanding of decision-making in the wild. Existing non-invasive human biomedical technology offers tools that could be harnessed to address these challenges. Functional near-infrared spectroscopy (fNIRS), a wearable, non-invasive biomedical imaging technique measures oxy- and deoxyhaemoglobin concentration changes that can be used to detect localized neural activation in the brain. We tested the efficacy of fNIRS to detect cortical activation in grey seals (Halichoerus grypus) and identify regions of the cortex associated with different senses (vision, hearing and touch). The activation of specific cerebral areas in seals was detected by fNIRS in responses to light (vision), sound (hearing) and whisker stimulation (touch). Physiological parameters, including heart and breathing rate, were also extracted from the fNIRS signal, which allowed neural and physiological responses to be monitored simultaneously. This is, to our knowledge, the first time fNIRS has been used to detect cortical activation in a non-domesticated or laboratory animal. Because fNIRS is non-invasive and wearable, this study demonstrates its potential as a tool to quantitatively investigate sensory perception and brain function while simultaneously recording heart rate, tissue and arterial oxygen saturation of haemoglobin, perfusion changes and breathing rate in free-ranging animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.


Assuntos
Mapeamento Encefálico/instrumentação , Encéfalo/fisiologia , Fisiologia/instrumentação , Focas Verdadeiras/fisiologia , Animais
5.
Philos Trans R Soc Lond B Biol Sci ; 376(1831): 20200349, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34176327

RESUMO

Continuous measurements of haemodynamic and oxygenation changes in free living animals remain elusive. However, developments in biomedical technologies may help to fill this knowledge gap. One such technology is continuous-wave near-infrared spectroscopy (CW-NIRS)-a wearable and non-invasive optical technology. Here, we develop a marinized CW-NIRS system and deploy it on elite competition freedivers to test its capacity to function during deep freediving to 107 m depth. We use the oxyhaemoglobin and deoxyhaemoglobin concentration changes measured with CW-NIRS to monitor cerebral haemodynamic changes and oxygenation, arterial saturation and heart rate. Furthermore, using concentration changes in oxyhaemoglobin engendered by cardiac pulsation, we demonstrate the ability to conduct additional feature exploration of cardiac-dependent haemodynamic changes. Freedivers showed cerebral haemodynamic changes characteristic of apnoeic diving, while some divers also showed considerable elevations in venous blood volumes close to the end of diving. Some freedivers also showed pronounced arterial deoxygenation, the most extreme of which resulted in an arterial saturation of 25%. Freedivers also displayed heart rate changes that were comparable to diving mammals both in magnitude and patterns of change. Finally, changes in cardiac waveform associated with heart rates less than 40 bpm were associated with changes indicative of a reduction in vascular compliance. The success here of CW-NIRS to non-invasively measure a suite of physiological phenomenon in a deep-diving mammal highlights its efficacy as a future physiological monitoring tool for human freedivers as well as free living animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.


Assuntos
Encéfalo/fisiologia , Suspensão da Respiração , Fenômenos Fisiológicos Cardiovasculares , Mergulho/fisiologia , Atletas , Frequência Cardíaca , Hemodinâmica , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho
6.
PLoS Biol ; 17(6): e3000306, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31211787

RESUMO

Investigation of marine mammal dive-by-dive blood distribution and oxygenation has been limited by a lack of noninvasive technology for use in freely diving animals. Here, we developed a noninvasive near-infrared spectroscopy (NIRS) device to measure relative changes in blood volume and haemoglobin oxygenation continuously in the blubber and brain of voluntarily diving harbour seals. Our results show that seals routinely exhibit preparatory peripheral vasoconstriction accompanied by increased cerebral blood volume approximately 15 s before submersion. These anticipatory adjustments confirm that blood redistribution in seals is under some degree of cognitive control that precedes the mammalian dive response. Seals also routinely increase cerebral oxygenation at a consistent time during each dive, despite a lack of access to ambient air. We suggest that this frequent and reproducible reoxygenation pattern, without access to ambient air, is underpinned by previously unrecognised changes in cerebral drainage. The ability to track blood volume and oxygenation in different tissues using NIRS will facilitate a more accurate understanding of physiological plasticity in diving animals in an increasingly disturbed and exploited environment.


Assuntos
Reflexo de Mergulho/fisiologia , Mergulho/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Animais , Mamíferos/fisiologia , Oxigênio/sangue , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Phoca/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...