Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 206: 108182, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39178984

RESUMO

Bed bugs (Hemiptera: Cimicidae) are widely distributed, obligately blood-feeding insects, but they have never been linked to pathogen transmission in humans. Most other hematophagous insects that frequently bite humans transmit pathogens, and it is unclear why bed bugs do not. One hypothesis is that bed bugs have evolved a highly robust immune system because their mating system, traumatic insemination, exposes females to consistent wounding and bacterial infections. Although this has been proposed, very little is known about the bed bug immune system and how bed bugs respond to microbial challenges introduced by wounding. Similarly, there is little known about how the bed bug immune system responds to human pathogens. Understanding the bed bug immune system could give insight to why bed bugs appear not to transmit disease and under what circumstances they could, while also facilitating biological control efforts involving microbes. To investigate the transcriptomic response of bed bugs to immune challenges, we exposed female bed bugs to three bacterial challenges. 1.) Pseudomonas fluorescens, an entomopathogen known to have harmful effects to bed bugs, 2.) bacteria cultured from a bed bug enclosure (99.9 % Bacillus spp.), likely encountered during traumatic insemination, and 3.) Borrelia duttoni, a human vector-borne pathogen that causes relapsing fever. We compared the transcriptomes of infected bed bugs with uninfected matched controls in a pairwise fashion, focusing on immune-related genes. We found many known antimicrobial effector genes upregulated in response to P. fluorescens and traumatic insemination-associated bacteria, but interestingly, not in response to B. duttoni. In the differentially expressed genes that were shared between experiments, we found significant overlap in the P. fluorescens treatment and the traumatic insemination bacteria treatment, and between the P. fluorescens and B. duttoni treatments, but not between the traumatic insemination bacteria treatment and the B. duttoni treatment. Finally, we identify previously overlooked candidates for future studies of immune function in bed bugs, including a peroxidase-like gene, many putative cuticle-associated genes, a laccase-like gene, and a mucin-like gene. By taking a comprehensive transcriptomic approach, our study is an important step in understanding how bed bugs respond to diverse immune challenges.


Assuntos
Percevejos-de-Cama , Transcriptoma , Percevejos-de-Cama/microbiologia , Animais , Feminino , Humanos
2.
Microorganisms ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630301

RESUMO

Invading pathogens interact with plant-associated microbial communities, which can be altered under the pressure of pathogen infection. Limited information exists on plant-microbe interactions occurring during natural outbreaks in agricultural fields. Taproot decline (TRD) of soybean is an emerging disease caused by Xylaria necrophora. TRD disease occurrence and yield loss associated with TRD are outstanding issues in soybean production. We applied nuclear ribosomal DNA Internal Transcribed Spacers and 16S rRNA gene taxonomic marker sequencing to define the composition of the fungal and bacterial communities associated with healthy and diseased soybean roots collected from the Mississippi Delta. The plant compartment was a significant factor regulating taxonomic diversity, followed by the disease status of the plant. TRD impacted the root endophytes, causing imbalances; at the intermediate and advanced stages of TRD, X. necrophora decreased mycobiome diversity, whereas it increased microbiome richness. Networks of significant co-occurrence and co-exclusion relationships revealed direct and indirect associations among taxa and identified hubs with potential roles in assembling healthy and TRD-affected soybean biomes. These studies advance the understanding of host-microbe interactions in TRD and the part of biomes in plant health and disease.

3.
Sci Rep ; 9(1): 2241, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783149

RESUMO

Historically known as the yellow fever mosquito, Aedes aegypti invaded Madeira Island in 2005 and was the vector of the island's first dengue outbreak in 2012. We have studied genetic variation at 16 microsatellites and two mitochondrial DNA genes in temporal samples of Madeira Island, in order to assess the origin of the invasion and the population structure of this mosquito vector. Our results indicated at least two independent colonization events occurred on the island, both having a South American source population. In both scenarios, Venezuela was the most probable origin of these introductions, a result that is in accordance with the socioeconomic relations between this country and Madeira Island. Once introduced, Ae. aegypti has rapidly expanded along the southern coast of the island and reached a maximum effective population size (Ne) in 2012, coincident with the dengue epidemic. After the outbreak, there was a 10-fold reduction in Ne estimates, possibly reflecting the impact of community-based vector control measures implemented during the outbreak. These findings have implications for mosquito surveillance not only for Madeira Island, but also for other European regions where Aedes mosquitoes are expanding.


Assuntos
Aedes/crescimento & desenvolvimento , Espécies Introduzidas , Animais , Dengue/epidemiologia , Dengue/transmissão , Surtos de Doenças , Humanos , Portugal/epidemiologia
4.
Plant Dis ; 102(8): 1648-1652, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30673417

RESUMO

Plant pathogens are constantly emerging and spreading into new areas and there are often limited postdiagnosis treatment options for infection, making surveillance key to their control. Here we present results from a study testing the efficacy of a portable nanopore-based massively parallel sequencing (MPS) technology for use in the detection of diverse plant pathogens in selected samples. The Oxford MinION device was coupled with whole transcriptome amplification (WTA) to sequence the metatranscriptome of plant and insect tissues infected with either Candidatus Liberibacter asiaticus or plum pox virus. Results showed that this methodology is useful for detecting unsuspected viral and bacterial pathogens in plant and insect tissues. The percentage of generated reads assigned to plum pox virus was 95% from infected tissue and 3% from the viruliferous insect, Myzus persicae. Diaphorina citri sequencing led to 22% of the reads mapping as Ca. L. asiaticus. Plum pox virus and Ca. L. asiaticus were detected in both tissue and insect samples near the beginning of each sequencing run, demonstrating the capability of this methodology to obtain results rapidly. This approach also proved the capability of this system to determine the major components of the insect vector's microbiome and the specific strain of small-genome, high-titer pathogens.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Vírus Eruptivo da Ameixa/genética , Rhizobiaceae/genética , Animais , Genoma Bacteriano/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno , Insetos Vetores/microbiologia , Insetos Vetores/virologia , Insetos/microbiologia , Insetos/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/fisiologia , Reprodutibilidade dos Testes , Rhizobiaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA