Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1257: 341157, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37062568

RESUMO

Size-exclusion chromatography (SEC) hyphenated to pyrolysis-gas chromatography (Py-GC) has been demonstrated as a powerful tool in polymer analysis. A main limitation to the wider application of the method are the long second-dimension Py-GC analysis times, resulting in limited first-dimension sampling and/or long overall run times. Therefore, we set out to develop an online hyphenated SEC×Py-MS/FID method, removing the GC separation and allowing for a drastically reduced second-dimension analysis time compared to SEC-Py-GC. The pyrolysis method had a cycle time of 1.31 min, which was facilitated by liquid nitrogen cooling of the programmable temperature vaporizer (PTV) used for pyrolysis. The developed method featured no molar mass discrimination for masses above ±1.3 kDa, rendering it applicable to most commercial polymer systems. The method was demonstrated on multiple samples, including a complex industrial sample, yielding chemical composition heterogeneity and in some cases sequence heterogeneity information over the molar mass distribution.

2.
J Chromatogr A ; 1683: 463536, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209678

RESUMO

Traditional liquid-chromatographic techniques, such as size-exclusion chromatography, (critical) interaction chromatography, and hydrodynamic chromatography, can all reveal certain aspects of polymers and the underlying distributions. The distribution of incorporated acid groups present in polyacrylates can be determined by non-aqueous ion-exchange chromatography, independent of other distributions present. The microstructural details on how this number of acid groups is incorporated in the polymer remains unknown. A low-molar mass polymer molecule with high acid content and a high-molar mass polymer with a low acid content may have the exact same number of acid groups. To take a next step towards understanding the polymer microstructure of water-borne resins, the distribution of incorporated acid groups over the molar-mass distribution has been investigated. For this purpose, an on-line coupling of non-aqueous ion-exchange chromatography (NAIEX) to size-exclusion chromatography (SEC) was established. Practical considerations regarding the system setup with respect to chromatography modes and column- and valve switching dimensionality are discussed. The orthogonality of NAIEX and SEC is demonstrated. Both liquid chromatography modes may be calibrated using polymer standards, yielding a calibrated separation plane. Cross-sectional data on either the molar mass distribution or the acid group distribution at a certain point of the separation plane is obtained. The value of the designed setup was demonstrated by the detailed characterization of the combined acid-group and molar-mass distribution in polymers with a low acid content, in the order of a few mass-%. Several stages of the emulsion polymerization process could be identified using the combined power of NAIEX and SEC.


Assuntos
Polímeros , Água , Polímeros/química , Emulsões , Estudos Transversais , Cromatografia em Gel , Cromatografia por Troca Iônica
3.
Anal Chem ; 93(14): 5924-5930, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33794091

RESUMO

Water-borne polymers are in ever-increasing demand due to their favorable ecological profile compared to traditional solvent-borne polymer systems. Many water-borne polymer particles are stabilized in aqueous media by the incorporation of acid-functional monomers. Due to the large variety of comonomers applied, these water-borne polymers have various superimposed statistical distributions, which make it challenging to obtain in-depth information regarding incorporation of the acidic monomers. For selective analysis of the incorporated acidic monomers, a charge-based non-aqueous capillary electrophoresis (NACE) separation was developed. Two approaches were developed: (i) deprotonation of the acid functionality with an organically soluble strong base and (ii) heteroconjugation of anions of carboxylic acids with incorporated acid functionality. In both approaches, N-methylpyrrolidone, as a strong solvent for polymers with a favorable relative permittivity for the presence of dissociated ionic species, was used for the separation. It was shown that anions of carboxylic acids specifically associate with the incorporated acid groups in the polymers, resulting in negatively charged complexes that could be separated based on charge-to-size ratio by NACE. Although both approaches give comparable results with respect to acid distribution for acid-functional polymers, the effective mobility of the deprotonated polymers is roughly double that obtained from the heteroconjugation approach. Unlike the heteroconjugation approach, deprotonation conditions were detrimental to the fused-silica capillary, limiting practical use. Polymers with different chemical compositions, molecular weights, and acid contents were subjected to the CE approaches developed. Polymers with varying molecular weight but similar relative acid monomer content were shown to have similar migration times, which confirms that this approach separates polymers based on charge-to-size ratio.

4.
J Chromatogr A ; 1626: 461351, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32797831

RESUMO

Traditional polymer-separation methods, such as size-exclusion chromatography and (gradient) liquid adsorption chromatography, cannot provide separations exclusively based on the number of deprotonated carboxylic-acid groups along the backbone chain of polymers. A novel separation method, based on non-aqueous ion-exchange chromatography (NAIEX), was developed, which allows such a separation of acid-functional polymers that are soluble in organic solvents. The polar, aprotic N-methyl-2-pyrrolidone was found to be a suitable solvent. It features a high relative permittivity (favouring dissociation of ion pairs into free ions) and it is a good solvent for polymers and organic salts, such as triethyl-ammonium formate. A negative charge is established on these polymers by deprotonation of the carboxylic-acid groups in the presence of an organic superbase (tetramethyl guanidine). Traditional potent organic bases, such as triethylamine, do not possess the base strength to compensate for the increase in pKa of polymeric carboxylic acid groups in non-aqueous conditions. Triethyl-ammonium formate is proposed as an alternative to traditional salts used for elution in aqueous ion-exchange chromatography. Separation was performed on an industry-standard strong-anion-exchange column and (near-)universal detection of the polymers was performed by high-temperature evaporative-light-scattering detection. The NAIEX method yielded a separation based on the acid-functionality distribution of the polymer. NAIEX was compared with traditional normal- and reversed-phase liquid-chromatography approaches for the separation of acid-functional copolymers.


Assuntos
Cromatografia por Troca Iônica/métodos , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Polímeros/química , Espectroscopia de Prótons por Ressonância Magnética , Sais/química , Solventes/química
5.
Anal Chim Acta ; 1054: 184-192, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30712590

RESUMO

A thorough understanding of particle formation and polymer growth during emulsion polymerization is indispensable for the development of particles and products with very specific properties. This has created a demand for the detailed characterization of various properties and property distributions - and the relation between these. A method is described that enables comprehensive, simultaneous determination of the size distribution of nanoparticles and the molecular-weight distribution of the constituting polymers as a function of the particle size. The result is a complete two-dimensional distribution that details the interdependence of the two parameters. The approach comprehensively combines hydrodynamic chromatography with size-exclusion chromatography. An automated band-broadening filter has been developed to improve the accuracy of the measured distributions. The algorithm utilizes automated curve-fitting approaches to describe detected particle distributions for each horizontal slice of the 2D-LC chromatogram, and filters band broadening using calibration curves. The method has been applied to samples of complex nanoparticles comprising hydrophobic, hydrophilic and charged moieties, viz. stabilized dispersions of poly[(methyl methacrylate)-co-(butyl acrylate)-co-(methacrylic acid)]-nanoparticles in water. We consistently found that, within a single population of particles, the weight-average molecular weight increases with particle size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...