Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(2): 279-289, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527237

RESUMO

Protein-protein interactions are fundamental to life processes. Complementary computational, structural, and biophysical studies of these interactions enable the forces behind their specificity and strength to be understood. Antibody fragments such as single-chain antibodies have the specificity and affinity of full antibodies but a fraction of their size, expediting whole molecule studies and distal effects without exceeding the computational capacity of modeling systems. We previously reported the crystal structure of a high-affinity nanobody 59H10 bound to HIV-1 capsid protein p24 and deduced key interactions using all-atom molecular dynamics simulations. We studied the properties of closely related medium (37E7) and low (48G11) affinity nanobodies, to understand how changes of three (37E7) or one (48G11) amino acids impacted these interactions; however, the contributions of enthalpy and entropy were not quantified. Here, we report the use of qualitative and quantitative experimental and in silico approaches to separate the contributions of enthalpy and entropy. We used complementary circular dichroism spectroscopy and molecular dynamics simulations to qualitatively delineate changes between nanobodies in isolation and complexed with p24. Using quantitative techniques such as isothermal titration calorimetry alongside WaterMap and Free Energy Perturbation protocols, we found the difference between high (59H10) and medium (37E7) affinity nanobodies on binding to HIV-1 p24 is entropically driven, accounted for by the release of unstable waters from the hydrophobic surface of 59H10. Our results provide an exemplar of the utility of parallel in vitro and in silico studies and highlight that differences in entropic interactions between amino acids and water molecules are sufficient to drive orders of magnitude differences in affinity.


Assuntos
Infecções por HIV , Anticorpos de Domínio Único , Humanos , Termodinâmica , Entropia , Aminoácidos/metabolismo , Ligação Proteica , Calorimetria
2.
ACS Nano ; 12(1): 279-288, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29215864

RESUMO

Paper-based lateral flow immunoassays (LFIAs) are one of the most widely used point-of-care (PoC) devices; however, their application in early disease diagnostics is often limited due to insufficient sensitivity for the requisite sample sizes and the short time frames of PoC testing. To address this, we developed a serum-stable, nanoparticle catalyst-labeled LFIA with a sensitivity surpassing that of both current commercial and published sensitivities for paper-based detection of p24, one of the earliest and most conserved biomarkers of HIV. We report the synthesis and characterization of porous platinum core-shell nanocatalysts (PtNCs), which show high catalytic activity when exposed to complex human blood serum samples. We explored the application of antibody-functionalized PtNCs with strategically and orthogonally modified nanobodies with high affinity and specificity toward p24 and established the key larger nanoparticle size regimes needed for efficient amplification and performance in LFIA. Harnessing the catalytic amplification of PtNCs enabled naked-eye detection of p24 spiked into sera in the low femtomolar range (ca. 0.8 pg·mL-1) and the detection of acute-phase HIV in clinical human plasma samples in under 20 min. This provides a versatile absorbance-based and rapid LFIA with sensitivity capable of significantly reducing the HIV acute phase detection window. This diagnostic may be readily adapted for detection of other biomolecules as an ultrasensitive screening tool for infectious and noncommunicable diseases and can be capitalized upon in PoC settings for early disease detection.


Assuntos
Anticorpos Imobilizados/química , Proteína do Núcleo p24 do HIV/análise , Infecções por HIV/sangue , HIV/isolamento & purificação , Imunoensaio/instrumentação , Nanopartículas Metálicas/química , Platina/química , Testes Imediatos , Catálise , Desenho de Equipamento , Ouro/química , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , Humanos , Nanopartículas Metálicas/ultraestrutura , Porosidade
3.
Sci Rep ; 7(1): 11971, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931860

RESUMO

The development is reported of an ultra-rapid, point-of-care diagnostic device which harnesses surface acoustic wave (SAW) biochips, to detect HIV in a finger prick of blood within 10 seconds (sample-in-result-out). The disposable quartz biochip, based on microelectronic components found in every consumer smartphone, is extremely fast because no complex labelling, amplification or wash steps are needed. A pocket-sized control box reads out the SAW signal and displays results electronically. High analytical sensitivity and specificity are found with model and real patient blood samples. The findings presented here open up the potential of consumer electronics to cut lengthy test waiting times, giving patients on the spot access to potentially life-saving treatment and supporting more timely public health interventions to prevent disease transmission.


Assuntos
Técnicas Biossensoriais/métodos , Infecções por HIV/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Smartphone , Humanos , Sensibilidade e Especificidade , Tempo
4.
Proc Math Phys Eng Sci ; 473(2201): 20160822, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28588400

RESUMO

Despite certain quantum concepts, such as superposition states, entanglement, 'spooky action at a distance' and tunnelling through insulating walls, being somewhat counterintuitive, they are no doubt extremely useful constructs in theoretical and experimental physics. More uncertain, however, is whether or not these concepts are fundamental to biology and living processes. Of course, at the fundamental level all things are quantum, because all things are built from the quantized states and rules that govern atoms. But when does the quantum mechanical toolkit become the best tool for the job? This review looks at four areas of 'quantum effects in biology'. These are biosystems that are very diverse in detail but possess some commonality. They are all (i) effects in biology: rates of a signal (or information) that can be calculated from a form of the 'golden rule' and (ii) they are all protein-pigment (or ligand) complex systems. It is shown, beginning with the rate equation, that all these systems may contain some degree of quantumeffect, and where experimental evidence is available, it is explored to determine how the quantum analysis aids in understanding of the process.

5.
ACS Infect Dis ; 3(7): 479-491, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28591513

RESUMO

Preventing the spread of infectious diseases remains an urgent priority worldwide, and this is driving the development of advanced nanotechnology to diagnose infections at the point of care. Herein, we report the creation of a library of novel nanobody capture ligands to detect p24, one of the earliest markers of HIV infection. We demonstrate that these nanobodies, one tenth the size of conventional antibodies, exhibit high sensitivity and broad specificity to global HIV-1 subtypes. Biophysical characterization indicates strong 690 pM binding constants and fast kinetic on-rates, 1 to 2 orders of magnitude better than monoclonal antibody comparators. A crystal structure of the lead nanobody and p24 was obtained and used alongside molecular dynamics simulations to elucidate the molecular basis of these enhanced performance characteristics. They indicate that binding occurs at C-terminal helices 10 and 11 of p24, a negatively charged region of p24 complemented by the positive surface of the nanobody binding interface involving CDR1, CDR2, and CDR3 loops. Our findings have broad implications on the design of novel antibodies and a wide range of advanced biomedical applications.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Anti-HIV/química , Proteína do Núcleo p24 do HIV/química , HIV-1/química , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Especificidade de Anticorpos , Sítios de Ligação , Camelídeos Americanos , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/isolamento & purificação , Proteína do Núcleo p24 do HIV/genética , Proteína do Núcleo p24 do HIV/imunologia , Humanos , Cinética , Simulação de Dinâmica Molecular , Biblioteca de Peptídeos , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/isolamento & purificação , Eletricidade Estática
6.
Photosynth Res ; 120(3): 273-89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24504540

RESUMO

We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments.


Assuntos
Chlorobi/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Simulação de Dinâmica Molecular , Anisotropia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Chlorobi/metabolismo , Chlorobi/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Compostos Orgânicos/química
7.
J Am Chem Soc ; 136(5): 2048-57, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24405318

RESUMO

Phototrophic organisms such as plants, photosynthetic bacteria, and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have several functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be among the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria, the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level, we introduce an atomistic model that mimics a complete light-harvesting apparatus of green sulfur bacteria. The model contains approximately 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate, and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the transfer between collective excited states of pigments can result in robust energy funneling to the initial excitation conditions and temperature changes. Moreover, the same mechanism describes the coexistence of multiple time scales of excitation dynamics frequently observed in ultrafast optical experiments. While our findings support the hypothesis of supertransfer, the model reveals energy transport through multiple channels on different length scales.


Assuntos
Chlorobi/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Modelos Moleculares , Fotossíntese , Cinética , Complexos de Proteínas Captadores de Luz/metabolismo , Organelas/metabolismo
8.
Sensors (Basel) ; 12(11): 15709-49, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23202229

RESUMO

Just how we discriminate between the different odours we encounter is not completely understood yet. While obviously a matter involving biology, the core issue isa matter for physics: what microscopic interactions enable the receptors in our noses-small protein switches­to distinguish scent molecules? We survey what is and is not known about the physical processes that take place when we smell things, highlighting the difficulties in developing a full understanding of the mechanics of odorant recognition. The main current theories, discussed here, fall into two major groups. One class emphasises the scent molecule's shape, and is described informally as a "lock and key" mechanism. But there is another category, which we focus on and which we call "swipe card" theories:the molecular shape must be good enough, but the information that identifies the smell involves other factors. One clearly-defined "swipe card" mechanism that we discuss here is Turin's theory, in which inelastic electron tunnelling is used to discern olfactant vibration frequencies. This theory is explicitly quantal, since it requires the molecular vibrations to take in or give out energy only in discrete quanta. These ideas lead to obvious experimental tests and challenges. We describe the current theory in a form that takes into account molecular shape as well as olfactant vibrations. It emerges that this theory can explain many observations hard to reconcile in other ways. There are still some important gaps in a comprehensive physics-based description of the central steps in odorant recognition. We also discuss how far these ideas carry over to analogous processes involving other small biomolecules, like hormones, steroids and neurotransmitters. We conclude with a discussion of possible quantum behaviours in biology more generally, the case of olfaction being just one example. This paper is presented in honour of Prof. Marshall Stoneham who passed away unexpectedly during its writing.


Assuntos
Modelos Teóricos , Odorantes , Humanos , Feromônios/metabolismo , Receptores Odorantes/metabolismo , Olfato
9.
J R Soc Interface ; 9(66): 43-53, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21613285

RESUMO

Understanding how structural features determine specific biological activities has often proved elusive. With over 161,000 steroid structures described, an algorithm able to predict activity from structural attributes would provide manifest benefits. Molecular simulations of a range of 35 corticosteroids show striking correlations between conformational mobility and biological specificity. Thus steroid ring A is important for glucocorticoid action, and is rigid in the most specific (and potent) examples, such as dexamethasone. By contrast, ring C conformation is important for the mineralocorticoids, and is rigid in aldosterone. Other steroids that are less specific, or have mixed functions, or none at all, are more flexible. One unexpected example is 11-deoxycorticosterone, which the methods predict (and our activity studies confirm) is not only a specific mineralocorticoid, but also has significant glucocorticoid activity. These methods may guide the design of new corticosteroid agonists and antagonists. They will also have application in other examples of ligand-receptor interactions.


Assuntos
Corticosteroides/química , Corticosteroides/fisiologia , Ligação Competitiva , Simulação por Computador , Ligantes , Modelos Moleculares , Conformação Molecular , Receptores de Esteroides/química , Relação Estrutura-Atividade
10.
J Phys Chem Lett ; 3(17): 2357-61, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-26292114

RESUMO

Chlorosomes are likely the largest and most efficient natural light-harvesting photosynthetic antenna systems. They are composed of large numbers of bacteriochlorophylls organized into supramolecular aggregates. We explore the microscopic origin of the fast excitation energy transfer in the chlorosome using the recently resolved structure and atomistic-detail simulations. Despite the dynamical disorder effects on the electronic transitions of the bacteriochlorophylls, our simulations show that the exciton delocalizes over the entire aggregate in about 200 fs. The memory effects associated to the dynamical disorder assist the exciton diffusion through the aggregates and enhance the diffusion coefficients as a factor of 2 as compared to the model without memory. Furthermore, exciton diffusion in the chlorosome is found to be highly anisotropic with the preferential transfer toward the baseplate, which is the next functional element in the photosynthetic system.

11.
Philos Trans A Math Phys Eng Sci ; 368(1924): 3491-502, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20603363

RESUMO

Human sensory processes are well understood: hearing, seeing, perhaps even tasting and touch--but we do not understand smell--the elusive sense. That is, for the others we know what stimuli causes what response, and why and how. These fundamental questions are not answered within the sphere of smell science; we do not know what it is about a molecule that ... smells. I report, here, the status quo theories for olfaction, highlighting what we do not know, and explaining why dismissing the perception of the input as 'too subjective' acts as a roadblock not conducive to scientific inquiry. I outline the current and new theory that conjectures a mechanism for signal transduction based on quantum mechanical phenomena, dubbed the 'swipe card', which is perhaps controversial but feasible. I show that such lines of thinking may answer some questions, or at least pose the right questions. Most importantly, I draw links and comparisons as to how better understanding of how small (10's of atoms) molecules can interact so specially with large (10,000's of atoms) proteins in a way that is so integral to healthy living. Repercussions of this work are not just important in understanding a basic scientific tool used by us all, but often taken for granted, it is also a step closer to understanding generic mechanisms between drug and receptor, for example.


Assuntos
Odorantes , Percepção Olfatória/fisiologia , Receptores Odorantes/fisiologia , Olfato/fisiologia , Humanos
12.
J R Soc Interface ; 6(30): 75-86, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-18595834

RESUMO

The olfactory system sensitively discerns scents from many small molecules as the brain analyses signals from nasal receptors. These receptors are selective to some degree, though the mechanism for selectivity is still controversial. Enantiomers, chiral pairs of left- and right-handed structures, are an important class of molecules in assessing proposed mechanisms. We show that there is a correlation between molecular (structural) flexibility and whether or not the left- and right-handed enantiomers smell the same. In particular, for the fairly extensive class of enantiomers with six-membered ring flexibility, enantiomers do not smell the same. There are, of course, significant experimental uncertainties, which we discuss here. We discuss models of receptor selectivity, both those based on shape and those where discrimination is based on other factors, such as electron affinity, proton affinity or vibration frequencies. The differences in scent of these enantiomers appear to be consistent with simple generalizations of a 'swipe card' model in which, while the shape must be good enough, critical information for actuation is a separate factor.


Assuntos
Odorantes , Receptores Odorantes/química , Olfato/fisiologia , Simulação por Computador , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
13.
Phys Rev Lett ; 98(3): 038101, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17358733

RESUMO

Our sense of smell relies on sensitive, selective atomic-scale processes that occur when a scent molecule meets specific receptors in the nose. The physical mechanisms of detection are unclear: odorant shape and size are important, but experiment shows them insufficient. One novel proposal suggests receptors are actuated by inelastic electron tunneling from a donor to an acceptor mediated by the odorant, and provides critical discrimination. We test the physical viability of this mechanism using a simple but general model. With parameter values appropriate for biomolecular systems, we find the proposal consistent both with the underlying physics and with observed features of smell. This mechanism suggests a distinct paradigm for selective molecular interactions at receptors (the swipe card model): recognition and actuation involve size and shape, but also exploit other processes.


Assuntos
Modelos Biológicos , Odorantes , Receptores Odorantes/fisiologia , Olfato/fisiologia , Elétrons , Humanos , Modelos Químicos , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...