Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 252: 121201, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335746

RESUMO

The severity and frequency of droughts are projected to increase globally due to climate change, but the effects of this on water quality are uncertain. The Murray-Darling Basin (MDB) is the largest river system in Australia and has been impacted by droughts of varying severity within recent decades. In this study, we assessed the influence of hydrological droughts and their characteristics (severity and duration) on water quality, utilising a long-term (1980-2017) dataset from two monitoring sites. The main drought periods, and their duration and severity, were identified using the calculated Standardised Drought Index values (SDI) from averaged monthly streamflow data. While several hydrological drought periods were identified, the longest duration and greatest severity were during the Millennium Drought (1998-2010). Nutrient loads and concentrations of Total Nitrogen and Total Phosphorus of drought and post-drought periods were significantly different. The drought period showed the lowest median and interquartile range of nutrient (total nitrogen, TN; oxidised nitrogen, NOX; total phosphorus, TP; and soluble reactive phosphorus, SRP) concentrations and loads for both sites, whereas the highest nutrient loads and concentrations were reported during the post-drought period (approx. 1 × 103 to 1 × 105 kg day-1 increase in nutrient loads). Our analysis found significant relationships between nutrient loads and SDI during droughts. The load of N and P in the initial flush post-drought increased with drought at both sites. This suggests that nutrients were retained in the landscape during the drought and released in higher loads post-drought when the catchment became wetter, the hydrology was activated, and nutrients were mobilised. Hydrology is a key driver controlling the water quality within the inter-drought period and the peak nutrient loads post-drought. The duration and the severity of droughts had a significant (p = 0.01) influence on peak TN and TP monthly loads but not cumulative loads over a 12-month period. Hydrological droughts are important factors in controlling the water quality of the MDB. Therefore, management efforts should be focused on reducing the occurrence and duration of these events, along with the implementation of catchment nutrient control measures.


Assuntos
Secas , Qualidade da Água , Hidrologia , Rios , Fósforo/análise , Nitrogênio/análise
2.
Water Res ; 251: 121155, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277827

RESUMO

Terrestrial inputs and subsequent degradation of dissolved organic matter (DOM) in lake ecosystems can result in rapid depletion of dissolved oxygen (DO). Inputs of terrestrial DOM including organic acids can also lead to decreases in pH. However, to date, few studies have investigated the linkages between terrestrial DOM inputs, DO and pH levels in the water column, and carbon dioxide (CO2) emissions from lake ecosystems. Based on monthly field sampling campaigns across 100 sites in Lake Qiandao, a major man-made drinking water reservoir in China, from May 2020 to April 2021, we estimated an annual CO2 efflux (FCO2) of 37.2 ± 29.0 gC m-2 yr-1, corresponding to 0.02 ± 0.02 TgC yr-1 from this lake. FCO2 increased significantly with decreasing DO, chlorophyll-a (Chl-a) and δ2H-H2O, while FCO2 increased with increasing specific UV absorbance (SUVA254) and a terrestrial humic-like component (C2). We found that DO concentration and pH declined with increasing terrestrial DOM inputs, i.e. increased SUVA254 and terrestrial humic-like C2 levels. Vertical profile sampling revealed that the partial pressure of CO2 (pCO2) increased with increasing terrestrial DOM fluorescence (FDOM), while DO, pH, and δ13C-CO2 declined with increasing terrestrial FDOM. These results highlight the importance of terrestrial DOM inputs in altering physico-chemical environments and fueling CO2 emissions from this lake and potentially other aquatic ecosystems.


Assuntos
Matéria Orgânica Dissolvida , Água Potável , Humanos , Dióxido de Carbono , Ecossistema , Lagos , China , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência
3.
Environ Sci Ecotechnol ; 19: 100326, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38089436

RESUMO

The presence of organic matter in lakes profoundly impacts drinking water supplies, yet treatment processes involving coagulants and disinfectants can yield carcinogenic disinfection by-products. Traditional assessments of organic matter, such as chemical oxygen demand (CODMn) and biochemical oxygen demand (BOD5), are often time-consuming. Alternatively, optical measurements of dissolved organic matter (DOM) offer a rapid and reliable means of obtaining organic matter composition data. Here we employed DOM optical measurements in conjunction with parallel factor analysis to scrutinize CODMn and BOD5 variability. Validation was performed using an independent dataset encompassing six lakes on the Yungui Plateau from 2014 to 2016 (n = 256). Leveraging multiple linear regressions (MLRs) applied to DOM absorbance at 254 nm (a254) and fluorescence components C1-C5, we successfully traced CODMn and BOD5 variations across the entire plateau (68 lakes, n = 271, R2 > 0.8, P < 0.0001). Notably, DOM optical indices yielded superior estimates (higher R2) of CODMn and BOD5 during the rainy season compared to the dry season and demonstrated increased accuracy (R2 > 0.9) in mesotrophic lakes compared to oligotrophic and eutrophic lakes. This study underscores the utility of MLR-based DOM indices for inferring CODMn and BOD5 variability in plateau lakes and highlights the potential of integrating in situ and remote sensing platforms for water pollution early warning.

4.
Environ Sci Pollut Res Int ; 30(40): 92379-92389, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37488385

RESUMO

Water resource security directly or indirectly affects the development of society, economy, and the environment, and is of massive significance for regional sustainable development. This study addresses whether anthropogenic activities, especially from tourism, significantly affect the freshwater quality in Hainan Province, China. The freshwater quality in Hainan Province was generally good in 2012 to 2015 (at level II, GB3838-2002). Agriculture, fishery, animal husbandry, and chemical oxygen demand discharge mainly affect freshwater quality in the Nandu and Changhua rivers. Water quality in Wanquan River is more susceptible to tourism in comparison with the Nandu and Changhua rivers. DO content in the Wanquan River fluctuated greatly. It remains necessary to closely monitor negative changes in water quality due to increasing tourism, especially in Wanquan River and eastern Hainan Province. The developed radial basis function neural network shows that the changes in water quality are predicted accurately in comparison with experimental values in the present study. Our results suggested that current anthropogenic factors had a modest effect on water quality on Hainan Island, while tourism had a perceptible effect in eastern Hainan. Our findings provide a reference for the interplay of water quality, people's livelihood, and economic development (tourism and port construction) in Hainan Province.


Assuntos
Efeitos Antropogênicos , Monitoramento Ambiental , Animais , Rios/química , China
5.
Nature ; 619(7969): 317-322, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438590

RESUMO

Plastic debris is thought to be widespread in freshwater ecosystems globally1. However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging2,3. Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 µm) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris4. Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.


Assuntos
Lagos , Plásticos , Poluição da Água , Abastecimento de Água , Ecossistema , Lagos/química , Plásticos/análise , Plásticos/classificação , Poluição da Água/análise , Poluição da Água/estatística & dados numéricos , Inquéritos e Questionários , Urbanização , Atividades Humanas
6.
Ecol Evol ; 13(4): e9905, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37038530

RESUMO

Quantifying habitat quality is dependent on measuring a site's relative contribution to population growth rate. This is challenging for studies of waterbirds, whose high mobility can decouple demographic rates from local habitat conditions and make sustained monitoring of individuals near-impossible. To overcome these challenges, biologists have used many direct and indirect proxies of waterbird habitat quality. However, consensus on what methods are most appropriate for a given scenario is lacking. We undertook a structured literature review of the methods used to quantify waterbird habitat quality, and provide a synthesis of the context-dependent strengths and limitations of those methods. Our search of the Web of Science and Scopus databases returned a sample of 666 studies, upon which our review was based. The reviewed studies assessed habitat quality by either measuring habitat attributes (e.g., food abundance, water quality, vegetation structure), or measuring attributes of the waterbirds themselves (e.g., demographic parameters, body condition, behavior, distribution). Measuring habitat attributes, although they are only indirectly related to demographic rates, has the advantage of being unaffected by waterbird behavioral stochasticity. Conversely, waterbird-derived measures (e.g., body condition, peck rates) may be more directly related to demographic rates than habitat variables, but may be subject to greater stochastic variation (e.g., behavioral change due to presence of conspecifics). Therefore, caution is needed to ensure that the measured variable does influence waterbird demographic rates. This assumption was usually based on ecological theory rather than empirical evidence. Our review highlighted that there is no single best, universally applicable method to quantify waterbird habitat quality. Individual project specifics (e.g., time frame, spatial scale, funding) will influence the choice of variables measured. Where possible, practitioners should measure variables most directly related to demographic rates. Generally, measuring multiple variables yields a better chance of accurately capturing the relationship between habitat characteristics and demographic rates.

7.
Environ Sci Technol ; 57(11): 4668-4678, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36892554

RESUMO

Alpine river and lake systems on the Tibetan Plateau are highly sensitive indicators and amplifiers of global climate change and important components of the carbon cycle. Dissolved organic matter (DOM) encompasses organic carbon in aquatic systems, yet knowledge about DOM variation throughout the river-lake aquatic continuum within alpine regions is limited. We used optical spectroscopy, ultrahigh-resolution mass spectrometry (Fourier transform ion cyclotron resonance mass spectrometry), and stable water isotopic measurements to evaluate linkages between DOM composition and hydrological connection. We investigated glacial influences on DOM composition throughout the watershed of Selin Co, including upstream glacier-fed rivers and downstream-linked lakes. We found that the dissolved organic carbon concentration increased, whereas specific ultraviolet absorbance (SUVA254) decreased along the river-lake continuum. Relative to rivers, the downstream lakes had low relative abundances of polyphenolic and condensed aromatic compounds and humic-like substances but increased relative abundances of aliphatics and protein-like compounds. SUVA254 decreased while protein-like components increased with enriched stable water isotope δ2H-H2O, indicating that DOM aromaticity declined while autochthonous production increased along the flow paths. Glacier meltwater contributed to elevated relative abundances of aliphatic and protein-like compounds in headwater streams, while increased relative abundances of aromatics and humic-like DOM were found in glacier-fed lakes than downstream lakes. We conclude that changes in hydrological conditions, including glacier melt driven by a warming climate, will significantly alter DOM composition and potentially their biogeochemical function in surface waters on the Tibetan Plateau.


Assuntos
Matéria Orgânica Dissolvida , Hidrologia , Lagos , Matéria Orgânica Dissolvida/análise , Lagos/análise , Lagos/química , Tibet , Movimentos da Água , Rios , Congelamento , Espectrometria de Massas , Hidrogênio , Isótopos de Oxigênio , Volatilização
8.
Water Res ; 233: 119782, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842330

RESUMO

The Eastern Route of the South-to-North Water Diversion Project (SNWDP-ER) is a large scale multi-decade infrastructure project aiming to divert substantial amounts of water (≈45 billion m3 yr-1) to alleviate water shortage in comparatively arid regions of northern China. The project has ramifications for hydrological connectivity and biogeochemical cycling of dissolved organic matter (DOM) in regional lakes affected by the project. We carried out an extensive field sampling campaign along the SNWDP-ER in different hydrological seasons of 2018 and monthly observations in Lake Hongze and Lake Luoma from April 2018 to June 2021. We found the lakes connecting to the SNWDP-ER had higher mean DOC, specific UV absorbance, higher ratio of humic-like to protein-like fluorophores (Humic : Protein), and shallower spectral slope (S275-295) in the wet season compared to the wet-to-dry transition, and dry seasons. The southern lakes and Yangtze River had lower DOC concentration, bioavailable DOC (BDOC), and higher DOM aromaticity compared to the northern two downstream lakes. Ultrahigh-resolution mass spectrometry (FT-ICR MS) revealed higher relative abundance of CHO-containing and aromatic compounds in the Yangtze River and the southern three upstream lakes compared to the northern two lakes. The data from Lake Hongze and Lake Luoma, studied in different hydrological seasons, suggest that water delivery had high consistency in DOM composition and BDOC over the season. We conclude that positioning along the watercourse and seasonally variable hydrological conditions play an important role in influencing the DOM composition and bioavailability of key lakes connecting to the SNWDP-ER. Our results indicated that the water diversion project delivers water with low DOC concentration and higher aromaticity and thus is of higher quality since it has higher DOM removal potential during drinking water treatment.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Lagos/química , Disponibilidade Biológica , Espectrometria de Massas , China
9.
Glob Chang Biol ; 29(1): 1-4, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217679

RESUMO

We compiled a nationwide dataset of carbon dioxide (CO2 ) efflux from 1405 measurements, and found that lakes, reservoirs, and rivers emit a total of 61.9 ± 55.3 TgC as CO2 each year, corresponding to ~6.3% of the annual total national CO2 emission in 2020. Our analysis showed that the presence of anthropogenic disturbances in catchments strongly influences the emission of CO2 from these waters in the non-pristine areas, masking the catchment productivity effect on the emission of CO2 . Our results highlight the need for adjusting climate change models for taking into account anthropogenic effects on CO2 emissions from inland waters.


Assuntos
Dióxido de Carbono , Urbanização , Países em Desenvolvimento , Rios , Água
10.
Water Res ; 229: 119448, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481705

RESUMO

Lakes are hotspots for global carbon cycling, yet few studies have explored how rainstorms alter the flux, composition, and bio-lability of dissolved organic matter (DOM) in inflowing rivers using high-frequency monitoring. We conducted extensive campaigns in the watershed of Lake Taihu and made daily observations for three years in its two largest inflowing tributaries, River Dapu and River Yincun. We found higher DOC, bio-labile DOC (BDOC), and specific UV absorbance (SUVA254) levels in the northwestern inflowing regions compared with the remaining lake regions. DOC and BDOC increased during rainstorms in River Dapu, and DOC declined due to local dilution and BDOC increased during rainstorms in River Yincun. We found that rainstorms resulted in increased DOM absorbance a350, SUVA254, and humification index (HIX) and enhanced percentages of humic-like fluorescent components, %polycyclic condensed aromatic and %polyphenolic compounds as revealed from ultrahigh-resolution mass spectrometry (FT-ICR MS), while spectral slope (S275-295) and the percentages of protein-like C1 and C3 declined during rainstorms compared with other seasons. This can be explained by a combined flushing of catchment soil organic matter and household effluents. The annual inflows of DOC and BDOC to Lake Taihu were 1.15 ± 0.18 × 104 t C yr-1 and 0.23 ± 0.06 × 104 t C yr-1 from River Dapu and 2.92 ± 0.42 × 103 t C yr-1 and 0.53 ± 0.07 × 103 t C yr-1 from River Yincun, respectively, and the fluxes of DOC and BDOC from both rivers increased during rainstorms. We found an elevated frequency of heavy rainfall and rainstorms in the lake watershed during the past six decades. We conclude that an elevated input of terrestrial organic-rich DOM with concurrent high aromaticity and high bio-lability from inflowing rivers is likely to occur in a future wetter climate.


Assuntos
Lagos , Rios , Lagos/química , Rios/química , Estações do Ano , Matéria Orgânica Dissolvida , Solo , China
11.
Environ Sci Technol ; 56(22): 16494-16505, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36269179

RESUMO

Large reservoirs are hotspots for carbon emissions, and the continued input and decomposition of terrestrial dissolved organic matter (DOM) from upstream catchments is an important source of carbon emissions. Rainstorm events can cause a surge in DOM input; however, periodic sampling often fails to fully capture the impact of these discrete rainstorm events on carbon emissions. We conducted a set of frequent observations prior to and following a rainstorm event in a major reservoir Lake Qiandao (China; 580 km2) from June to July 2021 to investigate how rainstorms alter water chemistry and CO2 and CH4 emissions. We found that the mean CO2 efflux (FCO2) (13.2 ± 9.3 mmol m-2 d-1) and CH4 efflux (FCH4) (0.12 ± 0.02 mmol m-2 d-1) in the postrainstorm campaign were significantly higher than those in the prerainstorm campaign (-3.8 ± 3.0 and +0.06 ± 0.02 mmol m-2 d-1, respectively). FCO2 and FCH4 increased with increasing nitrogen and phosphorus levels, elevated DOM absorption (a350), specific UV absorbance SUVA254, and terrestrial humic-like fluorescence. Furthermore, FCO2 and FCH4 decreased with increasing chlorophyll-a (Chl-a), dissolved oxygen (DO), and pH. A five-day laboratory anoxic bioincubation experiment further revealed a depletion of terrestrial-DOM concurrent with increased CO2 and CH4 production. We conclude that rainstorms boost the emission of CO2 and CH4 fueled by the surge and decomposition of fresh terrestrially derived biolabile DOM in this and likely many other reservoir's major inflowing river mouths.


Assuntos
Água Potável , Rios , Rios/química , Carbono/análise , Dióxido de Carbono/análise , Lagos/química , China
12.
Harmful Algae ; 113: 102185, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35287926

RESUMO

Although there is growing evidence that benthic cyanobacteria represent a significant source of toxins and taste and odour (T&O) compounds in water bodies globally, water utilities rarely monitor for them. Benthic cyanobacteria grow in an array of matrices such as sediments, biofilms, and floating mats, and they can detach and colonize treatment plants. The occurrence of compounds produced by benthic species across matrix and climate types has not been systematically investigated. Consequently, there is a lack of guidance available to utilities to monitor for and mitigate the risk associated with benthic cyanobacteria. To assess toxin and T&O risk across climatic zones and provide guidance to water utilities for the monitoring of benthic mats, two field surveys were conducted across three continents. The surveys examined the occurrence of six secondary metabolites and associated genes, namely, geosmin, 2-methylisoborneol (MIB), anatoxin-a, saxitoxin, microcystin, and cylindrospermopsin, in benthic environmental samples collected across three climates (i.e., temperate, sub-tropical, and tropical) and a range of matrix types. Existing enzyme-linked immunosorbent assays (ELISAs) and qPCR assays and were used to measure compound concentrations and their associated genes in samples. A novel qPCR assay was designed to differentiate the production of MIB by actinobacteria from that of cyanobacteria. MIB occurrence was higher in warmer climates than temperate climates. Cyanobacteria in benthic mats were the major producers of taste and odour compounds. Floating mats contained significantly higher concentrations of geosmin and saxitoxins compared to other matrix types. Samples collected in warmer areas contained significantly more saxitoxin and cylindrospermopsin than samples collected in temperate climates. While these trends were mainly indicative, they can be used to establish monitoring practices. These surveys demonstrate that benthic mats are significant contributors of secondary metabolites in source water and should be monitored accordingly. Benthic cyanobacteria were the sole producers of T&O in up to 17% of the collected samples compared to actinobacteria, which were sole producers in only 1% of the samples. The surveys also provided a platform of choice for the transfer of methodologies and specific knowledge to participating utilities to assist with the establishment of monitoring practices for benthic cyanobacteria and associated secondary metabolites.


Assuntos
Cianobactérias , Cianobactérias/genética , Odorantes , Saxitoxina/metabolismo
13.
Environ Sci Technol ; 56(7): 4655-4664, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35258974

RESUMO

Lakes receive and actively process terrestrial dissolved organic matter (DOM) and play an important role in the global carbon cycle. Urbanization results in elevated inputs of nonpoint-source DOM to headwater streams. Retention of water in lakes allows time for alteration and transformation of the chemical composition of DOM by microbes and UV radiation. Yet, it remains unclear how anthropogenic and natural drivers impact the composition and biolability of DOM in non-pristine lakes. We used optical spectroscopy, Fourier transform ion cyclotron mass spectrometry, stable isotopic measurements, and laboratory bioincubations to investigate the chemical composition and biolability of DOM across two large data sets of lakes associated with a large gradient of urbanization in lowland Eastern China, encompassing a total of 99 lakes. We found that increased urban land use, gross domestic products, and population density in the catchment were associated with an elevated trophic level index, higher chlorophyll-a, higher bacterial abundance, and a higher amount of organic carbon with proportionally higher contribution of aliphatic and peptide-like DOM fractions, which can be highly biolabile. Catchment areas, water depth, lake area: catchment area, gross primary productivity, δ18O-H2O, and bacterial abundance, however, had comparatively little linkage with DOM composition and biolability. Urban land use is currently intensifying in many developing countries, and our results anticipate an increase in the level of biolabile aliphatic DOM from nonpoint sources and accelerated carbon cycling in lake ecosystems in such regions.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Carbono/análise , Lagos/química , Rios
14.
Natl Sci Rev ; 9(1): nwab207, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35070333

RESUMO

China has made a concerted effort to successfully improve water quality of rivers, but lake water quality has not improved. Lakes require controls on both catchment external nutrient loads and in-lake internal loads, where nature-based solutions are coupled with engineered systems to achieve the United Nations Sustainable Development Goals (SDGs).

15.
Environ Pollut ; 292(Pt A): 118276, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606973

RESUMO

Limnologists and governments have long had an interest in whether nitrogen (N) and/or phosphorous (P) limit algal productivity in lakes. However, the types and importance of anthropogenic and biogeochemical processes of N and P differ with lake trophic status. Here, a global lake dataset (annual average data from 831 lakes) demonstrates that total nitrogen (TN): total phosphorous (TP) ratios declined significantly as lakes become more eutrophic. From oligotrophic to hypereutrophic lakes, the probability of N and P co-limitation significantly increases from 15.0 to 67.0%, while P-only limitation decreases from 77.0 to 22.3%. Furthermore, TN:TP ratios are mainly affected by concentrations of TP (r = -0.699) rather than TN (r = -0.147). These results reveal that lake eutrophication mainly occurs with increasing P rather than N, which shifts lake ecosystems from stoichiometric P limitation toward a higher probability of N and P co-limitation. This study suggests that low N:P stoichiometry and a high probability of N and P co-limitation tend to occur in eutrophic systems.


Assuntos
Lagos , Fósforo , Ecossistema , Nitrogênio , Probabilidade
16.
Sci Total Environ ; 722: 138005, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208291

RESUMO

Lakes actively transform nitrogen (N) and emit disproportionately large amounts of N2O relative to their surface area. Studies have investigated the relative importance of denitrification or nitrification on N2O emissions; however, the linkage between N2O efflux and dissolved organic nitrogen (DON) and carbon (DOC) remains largely unknown. Long-term (2012-2017) seasonal field observations and a series of degradation experiments were used to unravel how DON composition impacts N2O emissions from Lake Taihu, China. In the northwestern part of the lake, large riverine inflow and high N2O emissions occur in all seasons (24.6 ± 25.2 µmol m-2 d-1), coincident with high levels of terrestrial DON and DOC here. The degradation of labile DON and DOC likely enhanced ammonification as supported by the correlations between NH4+-N and DON, DOC, a(350), and terrestrial humic-like C3. The area with large riverine inputs in the northwestern part of the lake was characterized by low DO which may enhance incomplete aerobic nitrification and incomplete denitrification, both leading to N2O production. Twenty days laboratory experiments indicated greater N2O production in the northwest inflow samples (N2O on day 20: 120.9 nmol L-1 and 17.3 nmol L-1 for bio- and photo-degradation samples, respectively) compared with the central lake samples (N2O on day 20: 20.3 nmol L-1 and 12.3 nmol L-1 for bio- and photo-degradation samples, respectively), despite both having low Chl-a. Our DON and DOC degradation experiments confirmed the occurrence of ammonification along with consumption of NH4+-N and thereafter NO3--N. Our results collectively suggest that terrestrial DON fueled ammonification, enhanced nitrification and incomplete denitrification, and thereby became an important contributor to the N2O efflux from Lake Taihu.

17.
Environ Sci Technol ; 54(6): 3191-3198, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32073831

RESUMO

Eutrophication mitigation is an ongoing priority for aquatic ecosystems. However, the current eutrophication control strategies (phosphorus (P) and/or nitrogen (N)) are guided mainly by nutrient addition experiments in small waters without encompassing all in-lake biogeochemical processes that are associated largely with lake morphological characteristics. Here, we use a global lake data set (573 lakes) to show that the relative roles of N vs P in affecting eutrophication are underpinned by water depth. Mean depth and maximum depth relative to mixing depth were used to distinguish shallow (mixing depth > maximum depth), deep (mixing depth < mean depth), and transitional (mean depth ≤ mixing depth ≤ maximum depth) lakes in this study. TN/TP ratio (by mass) was used as an indicator of potential lake nutrient limitation, i.e., N only limitation if N/P < 9, N + P colimitation if 9 ≤ N/P < 22.6, and P only limitation if N/P ≥ 22.6. The results show that eutrophication is favored in shallow lakes, frequently (66.2%) with N limitation while P limitation predominated (94.4%) in most lakes but especially in deep ones. The importance of N limitation increases but P limitation decreases with lake trophic status while N and P colimitation occurs primarily (59.4%) in eutrophic lakes. These results demonstrate that phosphorus reduction can mitigate eutrophication in most large lakes but a dual N and P reduction may be needed in eutrophic lakes, especially in shallow ones (or bays). Our analysis helps clarify the long debate over whether N, P, or both control primary production. While these results imply that more resources be invested in nitrogen management, given the high costs of nitrogen pollution reduction, more comprehensive results from carefully designed experiments at different scales are needed to further verify this modification of the existing eutrophication mitigation paradigm.


Assuntos
Lagos , Fósforo , China , Ecossistema , Monitoramento Ambiental , Eutrofização , Nitrogênio
18.
Sci Bull (Beijing) ; 65(19): 1675-1684, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659044

RESUMO

Long-term decreases in the incident total radiation and water clarity might substantially affect the underwater light environment in aquatic ecosystems. However, the underlying mechanism and relative contributions of radiation dimming and decreasing water clarity to the underwater light environment on a national or global scale remains largely unknown. Here, we present a comprehensive dataset of unprecedented scale in China's lakes to address the combined effects of radiation dimming and decreasing water clarity on underwater darkening. Long-term total radiation and sunshine duration showed 5.8% and 7.9% decreases, respectively, after 2000 compared to 1961-1970, resulting in net radiation dimming. An in situ Secchi disk depth (SDD) dataset in 170 lakes showed that the mean SDD significantly decreased from 1.80 ± 2.19 m before 1995 to 1.28 ± 1.82 m after 2005. SDD remote sensing estimations for 641 lakes with areas ≥ 10 km2 showed that SDD markedly decreased from 1.26 ± 0.62 m during 1985-1990 to 1.14 ± 0.66 m during 2005-2010. Radiation dimming and decreasing water clarity jointly caused an approximately 10% decrease in the average available photosynthetically active radiation (PAR) in the euphotic layer. Our results revealed a more important role of decreasing water clarity in underwater darkening than radiation dimming. A meta-analysis of long-term SDD observation data from 61 various waters further elucidated a global extensive underwater darkening. Underwater darkening implies a decrease in water quality for potable water supplies, recession in macrophytes and benthic algae, and decreases in benthic primary production, fishery production, and biodiversity.

19.
Water Res ; 169: 115222, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675609

RESUMO

Benthic cyanobacteria are a nuisance because they produce highly potent toxins and taste and odour compounds. Despite this, benthic cyanobacteria remain far less studied than their planktonic counterparts. For example, little is known about their growth or the seasonality of their secondary metabolite production. Moreover, sampling and monitoring techniques commonly used for the survey of planktonic species are not necessarily applicable to benthic forms. This study aimed to develop and validate a new sampling device for the routine monitoring of benthic mats. Molecular monitoring techniques were established and validated on environmental samples collected in a South Australian reservoir (SA-L2). A total of eight qPCR assays were applied to samples in order to track seasonal variations in cyanobacteria concentrations and associated secondary metabolite production. Next Generation Sequencing was utilised to conduct a microbial community composition analysis and to select the most appropriate substrate material for the sampling of benthic cyanobacteria. The concentration of the secondary metabolites geosmin and 2-methyl-isoborneol were quantified using High-Performance Liquid Chromatography, and concentrations of key nutrients (N, P) were quantified in water samples. The sampling device designed proved efficient and easy to use in the field. The qPCR assay designed for the amplification of the cyanobacterial MIB synthase had a high efficiency with a minimum limit of quantification of 4 cell-equivalents per reaction and identified a potential source of MIB in SA-L2 Reservoir. The peak season for benthic growth and secondary metabolite production was observed in spring. Proportionally, 35% of the variability in water geosmin concentrations can be explained by benthic actinobacterial and cyanobacterial activity, showing that freshwater benthic mats represent a significant source of taste and odour compounds.


Assuntos
Cianobactérias , Austrália , Água Doce , Odorantes , Paladar
20.
Environ Sci Technol ; 53(21): 12207-12217, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31525918

RESUMO

Globally, alpine glaciers hold a large quantity of dissolved organic matter (DOM) and are headwaters of numerous rivers supporting downstream heterotrophic metabolism. However, it remains unclear how glacial coverage and distance from the glacial terminus affect the fate of DOM. Here, we elucidate DOM variability in glacial-fed streams on the Tibetan Plateau using field sampling and bioincubation experiments and compare our findings with the existing literature. We found that dissolved organic carbon, DOM absorption a(254), DOM aromaticity, and the relative abundance of lignin compounds in glacial-fed streams and rivers all increased with increasing distance from the glacial terminus and with decreasing glacial coverage. We also found that contribution of protein-like components, the relative abundance of aliphatic compounds, and DOM biolability increased with increasing glacial coverage and with decreasing distance from the glacial terminus. The ratio of glacial coverage to the logarithmic transformed distance from the glacial terminus was better than that of actual glacial coverage and distance from the glacial terminus in tracing the variability of glacial-fed stream DOM. Microbes in surface ice can produce biolabile DOM that is exported downstream with meltwater. This glacial-fed stream and river DOM is an important source of the highly bioavailable material fueling downstream heterotrophic activity.


Assuntos
Ecossistema , Rios , Carbono , Camada de Gelo , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...