Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Physiol Meas ; 44(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37734339

RESUMO

Objective.Electrocardiographic imaging (ECGI) is a functional imaging modality that consists of two related problems, the forward problem of reconstructing body surface electrical signals given cardiac bioelectric activity, and the inverse problem of reconstructing cardiac bioelectric activity given measured body surface signals. ECGI relies on a model for how the heart generates bioelectric signals which is subject to variability in inputs. The study of how uncertainty in model inputs affects the model output is known as uncertainty quantification (UQ). This study establishes develops, and characterizes the application of UQ to ECGI.Approach.We establish two formulations for applying UQ to ECGI: a polynomial chaos expansion (PCE) based parametric UQ formulation (PCE-UQ formulation), and a novel UQ-aware inverse formulation which leverages our previously established 'joint-inverse' formulation (UQ joint-inverse formulation). We apply these to evaluate the effect of uncertainty in the heart position on the ECGI solutions across a range of ECGI datasets.Main results.We demonstrated the ability of our UQ-ECGI formulations to characterize the effect of parameter uncertainty on the ECGI inverse problem. We found that while the PCE-UQ inverse solution provided more complex outputs such as sensitivities and standard deviation, the UQ joint-inverse solution provided a more interpretable output in the form of a single ECGI solution. We find that between these two methods we are able to assess a wide range of effects that heart position variability has on the ECGI solution.Significance.This study, for the first time, characterizes in detail the application of UQ to the ECGI inverse problem. We demonstrated how UQ can provide insight into the behavior of ECGI using variability in cardiac position as a test case. This study lays the groundwork for future development of UQ-ECGI studies, as well as future development of ECGI formulations which are robust to input parameter variability.

2.
Trends Cogn Sci ; 27(3): 246-257, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739181

RESUMO

Neuroimaging research has been at the forefront of concerns regarding the failure of experimental findings to replicate. In the study of brain-behavior relationships, past failures to find replicable and robust effects have been attributed to methodological shortcomings. Methodological rigor is important, but there are other overlooked possibilities: most published studies share three foundational assumptions, often implicitly, that may be faulty. In this paper, we consider the empirical evidence from human brain imaging and the study of non-human animals that calls each foundational assumption into question. We then consider the opportunities for a robust science of brain-behavior relationships that await if scientists ground their research efforts in revised assumptions supported by current empirical evidence.


Assuntos
Encéfalo , Neuroimagem , Animais , Humanos , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
3.
J Neurophysiol ; 128(4): 994-1010, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001748

RESUMO

Converging evidence in human and animal models suggests that exogenous stimulation of the motor cortex (M1) elicits responses in the hand with similar modular structure to that found during voluntary grasping movements. The aim of this study was to establish the extent to which modularity in muscle responses to transcranial magnetic stimulation (TMS) to M1 resembles modularity in muscle activation during voluntary hand movements involving finger fractionation. Electromyography (EMG) was recorded from eight hand-forearm muscles in eight healthy individuals. Modularity was defined using non-negative matrix factorization to identify low-rank approximations (spatial muscle synergies) of the complex activation patterns of EMG data recorded during high-density TMS mapping of M1 and voluntary formation of gestures in the American Sign Language alphabet. Analysis of synergies revealed greater than chance similarity between those derived from TMS and those derived from voluntary movement. Both data sets included synergies dominated by single intrinsic hand muscles presumably to meet the demand for highly fractionated finger movement. These results suggest that corticospinal connectivity to individual intrinsic hand muscles may be combined with modular multimuscle activation via synergies in the formation of hand postures.NEW & NOTEWORTHY This is the first work to examine the similarity of modularity in hand muscle responses to transcranial magnetic stimulation (TMS) of the motor cortex and that derived from voluntary hand movement. We show that TMS-elicited muscle synergies of the hand, measured at rest, reflect those found in voluntary behavior involving finger fractionation. This work provides a basis for future work using TMS to investigate muscle activation modularity in the human motor system.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Animais , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Mãos/fisiologia , Humanos , Córtex Motor/fisiologia , Movimento , Músculo Esquelético/fisiologia
4.
Comput Biol Med ; 142: 105174, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065409

RESUMO

Electrocardiographic imaging (ECGI) is a noninvasive technique to assess the bioelectric activity of the heart which has been applied to aid in clinical diagnosis and management of cardiac dysfunction. ECGI is built on mathematical models that take into account several patient specific factors including the position of the heart within the torso. Errors in the localization of the heart within the torso, as might arise due to natural changes in heart position from respiration or changes in body position, contribute to errors in ECGI reconstructions of the cardiac activity, thereby reducing the clinical utility of ECGI. In this study we present a novel method for the reconstruction of cardiac geometry utilizing noninvasively acquired body surface potential measurements. Our geometric correction method simultaneously estimates the cardiac position over a series of heartbeats by leveraging an iterative approach which alternates between estimating the cardiac bioelectric source across all heartbeats and then estimating cardiac positions for each heartbeat. We demonstrate that our geometric correction method is able to reduce geometric error and improve ECGI accuracy in a wide range of testing scenarios. We examine the performance of our geometric correction method using different activation sequences, ranges of cardiac motion, and body surface electrode configurations. We find that after geometric correction resulting ECGI solution accuracy is improved and variability of the ECGI solutions between heartbeats is substantially reduced.


Assuntos
Mapeamento Potencial de Superfície Corporal , Eletrocardiografia , Mapeamento Potencial de Superfície Corporal/métodos , Diagnóstico por Imagem , Eletrocardiografia/métodos , Coração/diagnóstico por imagem , Humanos
5.
Comput Biol Med ; 141: 105128, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973587

RESUMO

The standard 12-lead electrocardiogram (ECG) is a diagnostic tool to asses cardiac electrical activity. The vectorcardiogram is a related tool that represents that activity as the direction of a vector. In this work we investigate CineECG, a new 12-lead ECG based analysis method designed to directly estimate the average cardiac anatomical location of activation over time. We describe CineECG calculation and a novel comparison parameter, the average isochrone position (AIP). In a model study, fourteen different activation sequences were simulated and corresponding 12-lead ECGs were computed. The CineECG was compared to AIP in terms of location and direction. In addition, 67-lead body surface potential maps from ten patients were used to study the sensitivity of CineECG to electrode mispositioning and anatomical model selection. Epicardial activation maps from four patients were used for further evaluation. The average distance between CineECG and AIP across the fourteen sequences was 23.7 ± 2.4 mm, with significantly better agreement in the terminal (27.3 ± 5.7 mm) versus the initial QRS segment (34.2 ± 6.1 mm). Up to four cm variation in electrode positioning produced an average distance of 6.5 ± 4.5 mm between CineECG trajectories, while substituting a generic heart/torso model for a patient-specific one produced an average difference of 6.1 ± 4.8 mm. Dominant epicardial activation map features were recovered. Qualitatively, CineECG captured significant features of activation sequences and was robust to electrode misplacement. CineECG provides a realistic representation of the average cardiac activation in normal and diseased hearts. In particular, the terminal segment of the CineECG might be useful to detect pathology.


Assuntos
Eletrocardiografia , Coração , Eletrocardiografia/métodos , Eletrodos , Coração/diagnóstico por imagem , Humanos , Modelos Anatômicos
6.
IEEE Trans Biomed Eng ; 69(6): 2041-2052, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34905487

RESUMO

OBJECTIVE: To investigatecardiac activation maps estimated using electrocardiographic imaging and to find methods reducing line-of-block (LoB) artifacts, while preserving real LoBs. METHODS: Body surface potentials were computed for 137 simulated ventricular excitations. Subsequently, the inverse problem was solved to obtain extracellular potentials (EP) and transmembrane voltages (TMV). From these, activation times (AT) were estimated using four methods and compared to the ground truth. This process was evaluated with two cardiac mesh resolutions. Factors contributing to LoB artifacts were identified by analyzing the impact of spatial and temporal smoothing on the morphology of source signals. RESULTS: AT estimation using a spatiotemporal derivative performed better than using a temporal derivative. Compared to deflection-based AT estimation, correlation-based methods were less prone to LoB artifacts but performed worse in identifying real LoBs. Temporal smoothing could eliminate artifacts for TMVs but not for EPs, which could be linked to their temporal morphology. TMVs led to more accurate ATs on the septum than EPs. Mesh resolution had anegligible effect on inverse reconstructions, but small distances were important for cross-correlation-based estimation of AT delays. CONCLUSION: LoB artifacts are mainly caused by the inherent spatial smoothing effect of the inverse reconstruction. Among the configurations evaluated, only deflection-based AT estimation in combination with TMVs and strong temporal smoothing can prevent LoB artifacts, while preserving real LoBs. SIGNIFICANCE: Regions of slow conduction are of considerable clinical interest and LoB artifacts observed in non-invasive ATs can lead to misinterpretations. We addressed this problem by identifying factors causing such artifacts.


Assuntos
Artefatos , Coração , Algoritmos , Eletrocardiografia , Coração/diagnóstico por imagem
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6003-6007, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892486

RESUMO

For the last several decades, emotion research has attempted to identify a "biomarker" or consistent pattern of brain activity to characterize a single category of emotion (e.g., fear) that will remain consistent across all instances of that category, regardless of individual and context. In this study, we investigated variation rather than consistency during emotional experiences while people watched video clips chosen to evoke instances of specific emotion categories. Specifically, we developed a sequential probabilistic approach to model the temporal dynamics in a participant's brain activity during video viewing. We characterized brain states during these clips as distinct state occupancy periods between state transitions in blood oxygen level dependent (BOLD) signal patterns. We found substantial variation in the state occupancy probability distributions across individuals watching the same video, supporting the hypothesis that when it comes to the brain correlates of emotional experience, variation may indeed be the norm.


Assuntos
Encéfalo , Emoções , Mapeamento Encefálico , Medo , Humanos , Saturação de Oxigênio
8.
Front Neurosci ; 15: 691701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408621

RESUMO

Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm (r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.

9.
Funct Imaging Model Heart ; 12738: 493-502, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34447971

RESUMO

Electrocardiographic imaging (ECGI) is an effective tool for noninvasive diagnosis of a range of cardiac dysfunctions. ECGI leverages a model of how cardiac bioelectric sources appear on the torso surface (the forward problem) and uses recorded body surface potential signals to reconstruct the bioelectric source (the inverse problem). Solutions to the inverse problem are sensitive to noise and variations in the body surface potential (BSP) recordings such as those caused by changes or errors in cardiac position. Techniques such as signal averaging seek to improve ECGI solutions by incorporating BSP signals from multiple heartbeats into an averaged BSP with a higher SNR to use when estimating the cardiac bioelectric source. However, signal averaging is limited when it comes to addressing sources of BSP variability such as beat to beat differences in the forward solution. We present a novel joint inverse formulation to solve for the cardiac source given multiple BSP recordings and known changes in the forward solution, here changes in the heart position. We report improved ECGI accuracy over signal averaging and averaged individual inverse solutions using this joint inverse formulation across multiple activation sequence types and regularization techniques with measured canine data and simulated heart motion. Our joint inverse formulation builds upon established techniques and consequently can easily be applied with many existing regularization techniques, source models, and forward problem formulations.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34406942

RESUMO

Transcranial Magnetic Stimulation (TMS) can be used to map cortical motor topography by spatially sampling the sensorimotor cortex while recording Motor Evoked Potentials (MEP) with surface electromyography (EMG). Traditional sampling strategies are time-consuming and inefficient, as they ignore the fact that responsive sites are typically sparse and highly spatially correlated. An alternative approach, commonly employed when TMS mapping is used for presurgical planning, is to leverage the expertise of the coil operator to use MEPs elicited by previous stimuli as feedback to decide which loci to stimulate next. In this paper, we propose to automatically infer optimal future stimulus loci using active learning Gaussian Process-based sampling in place of user expertise. We first compare the user-guided (USRG) method to the traditional grid selection method and randomized sampling to verify that the USRG approach has superior performance. We then compare several novel active Gaussian Process (GP) strategies with the USRG approach. Experimental results using real data show that, as expected, the USRG method is superior to the grid and random approach in both time efficiency and MEP map accuracy. We also found that an active warped GP entropy and a GP random-based strategy performed equally as well as, or even better than, the USRG method. These methods were completely automatic, and succeeded in efficiently sampling the regions in which the MEP response variations are largely confined. This work provides the foundation for highly efficient, fully automatized TMS mapping, especially when considered in the context of advances in robotic coil operation.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Eletromiografia , Potencial Evocado Motor , Humanos , Músculo Esquelético
11.
Sci Rep ; 11(1): 12576, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131165

RESUMO

Reflectance confocal microscopy (RCM) is an effective non-invasive tool for cancer diagnosis. However, acquiring and reading RCM images requires extensive training and experience, and novice clinicians exhibit high discordance in diagnostic accuracy. Quantitative tools to standardize image acquisition could reduce both required training and diagnostic variability. To perform diagnostic analysis, clinicians collect a set of RCM mosaics (RCM images concatenated in a raster fashion to extend the field view) at 4-5 specific layers in skin, all localized in the junction between the epidermal and dermal layers (dermal-epidermal junction, DEJ), necessitating locating that junction before mosaic acquisition. In this study, we automate DEJ localization using deep recurrent convolutional neural networks to delineate skin strata in stacks of RCM images collected at consecutive depths. Success will guide to automated and quantitative mosaic acquisition thus reducing inter operator variability and bring standardization in imaging. Testing our model against an expert labeled dataset of 504 RCM stacks, we achieved [Formula: see text] classification accuracy and nine-fold reduction in the number of anatomically impossible errors compared to the previous state-of-the-art.


Assuntos
Detecção Precoce de Câncer , Microscopia Confocal/métodos , Neoplasias Cutâneas/diagnóstico , Epiderme/diagnóstico por imagem , Epiderme/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia
13.
Sci Rep ; 11(1): 3679, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574486

RESUMO

Reflectance confocal microscopy (RCM) is a non-invasive imaging tool that reduces the need for invasive histopathology for skin cancer diagnoses by providing high-resolution mosaics showing the architectural patterns of skin, which are used to identify malignancies in-vivo. RCM mosaics are similar to dermatopathology sections, both requiring extensive training to interpret. However, these modalities differ in orientation, as RCM mosaics are horizontal (parallel to the skin surface) while histopathology sections are vertical, and contrast mechanism, RCM with a single (reflectance) mechanism resulting in grayscale images and histopathology with multi-factor color-stained contrast. Image analysis and machine learning methods can potentially provide a diagnostic aid to clinicians to interpret RCM mosaics, eventually helping to ease the adoption and more efficiently utilizing RCM in routine clinical practice. However standard supervised machine learning may require a prohibitive volume of hand-labeled training data. In this paper, we present a weakly supervised machine learning model to perform semantic segmentation of architectural patterns encountered in RCM mosaics. Unlike more widely used fully supervised segmentation models that require pixel-level annotations, which are very labor-demanding and error-prone to obtain, here we focus on training models using only patch-level labels (e.g. a single field of view within an entire mosaic). We segment RCM mosaics into "benign" and "aspecific (nonspecific)" regions, where aspecific regions represent the loss of regular architecture due to injury and/or inflammation, pre-malignancy, or malignancy. We adopt Efficientnet, a deep neural network (DNN) proven to accurately accomplish classification tasks, to generate class activation maps, and use a Gaussian weighting kernel to stitch smaller images back into larger fields of view. The trained DNN achieved an average area under the curve of 0.969, and Dice coefficient of 0.778 showing the feasibility of spatial localization of aspecific regions in RCM images, and making the diagnostics decision model more interpretable to the clinicians.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Confocal , Neoplasias Cutâneas/diagnóstico , Pele/ultraestrutura , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Semântica , Pele/diagnóstico por imagem , Pele/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia
14.
Funct Imaging Model Heart ; 12738: 515-522, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35449797

RESUMO

Despite advances in many of the techniques used in Electrocardiographic Imaging (ECGI), uncertainty remains insufficiently quantified for many aspects of the pipeline. The effect of geometric uncertainty, particularly due to segmentation variability, may be the least explored to date. We use statistical shape modeling and uncertainty quantification (UQ) to compute the effect of segmentation variability on ECGI solutions. The shape model was made with Shapeworks from nine segmentations of the same patient and incorporated into an ECGI pipeline. We computed uncertainty of the pericardial potentials and local activation times (LATs) using polynomial chaos expansion (PCE) implemented in UncertainSCI. Uncertainty in pericardial potentials from segmentation variation mirrored areas of high variability in the shape model, near the base of the heart and the right ventricular outflow tract, and that ECGI was less sensitive to uncertainty in the posterior region of the heart. Subsequently LAT calculations could vary dramatically due to segmentation variability, with a standard deviation as high as 126ms, yet mainly in regions with low conduction velocity. Our shape modeling and UQ pipeline presented possible uncertainty in ECGI due to segmentation variability and can be used by researchers to reduce said uncertainty or mitigate its effects. The demonstrated use of statistical shape modeling and UQ can also be extended to other types of modeling pipelines.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35479610

RESUMO

Segmentation of cardiac images is a variable component of many patient specific computational pipelines, yet its impact on simulated results are still not fully understood. A hurdle to to exploring the impact of the segmentation variability is the technical challenge of building a statistical shape model of the ventricles. In this study, we improved open our previous shape analysis by creating a unified shape model including both the epicardium and endocardium. We tested four techniques within ShapeWorks to generate a ventricular shape model: standard, multidomain, hybrid multidomain, and geodesic distance. The multidomain and hybrid multidomain generated a shape model using all eleven segmentations, and the geodesic distance method generated a shape model using a subset of four segmentations. Each of the shape models captured spatially dependent characteristics of the segmentation variability, including wall thickness, annular diameter, and basal truncation. While each of the three methods have benefits, the hybrid multidomain approach provided the most accurate shape model with fewest points and may be most useful in a majority of applications.

16.
Med Image Anal ; 67: 101841, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142135

RESUMO

In-vivo optical microscopy is advancing into routine clinical practice for non-invasively guiding diagnosis and treatment of cancer and other diseases, and thus beginning to reduce the need for traditional biopsy. However, reading and analysis of the optical microscopic images are generally still qualitative, relying mainly on visual examination. Here we present an automated semantic segmentation method called "Multiscale Encoder-Decoder Network (MED-Net)" that provides pixel-wise labeling into classes of patterns in a quantitative manner. The novelty in our approach is the modeling of textural patterns at multiple scales (magnifications, resolutions). This mimics the traditional procedure for examining pathology images, which routinely starts with low magnification (low resolution, large field of view) followed by closer inspection of suspicious areas with higher magnification (higher resolution, smaller fields of view). We trained and tested our model on non-overlapping partitions of 117 reflectance confocal microscopy (RCM) mosaics of melanocytic lesions, an extensive dataset for this application, collected at four clinics in the US, and two in Italy. With patient-wise cross-validation, we achieved pixel-wise mean sensitivity and specificity of 74% and 92%, respectively, with 0.74 Dice coefficient over six classes. In the scenario, we partitioned the data clinic-wise and tested the generalizability of the model over multiple clinics. In this setting, we achieved pixel-wise mean sensitivity and specificity of 77% and 94%, respectively, with 0.77 Dice coefficient. We compared MED-Net against the state-of-the-art semantic segmentation models and achieved better quantitative segmentation performance. Our results also suggest that, due to its nested multiscale architecture, the MED-Net model annotated RCM mosaics more coherently, avoiding unrealistic-fragmented annotations.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Microscopia Confocal
17.
Sci Rep ; 10(1): 20284, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219270

RESUMO

Machine learning methods provide powerful tools to map physical measurements to scientific categories. But are such methods suitable for discovering the ground truth about psychological categories? We use the science of emotion as a test case to explore this question. In studies of emotion, researchers use supervised classifiers, guided by emotion labels, to attempt to discover biomarkers in the brain or body for the corresponding emotion categories. This practice relies on the assumption that the labels refer to objective categories that can be discovered. Here, we critically examine this approach across three distinct datasets collected during emotional episodes-measuring the human brain, body, and subjective experience-and compare supervised classification solutions with those from unsupervised clustering in which no labels are assigned to the data. We conclude with a set of recommendations to guide researchers towards meaningful, data-driven discoveries in the science of emotion and beyond.


Assuntos
Emoções/fisiologia , Modelos Psicológicos , Psicologia/métodos , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina não Supervisionado , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Análise por Conglomerados , Conjuntos de Dados como Assunto , Teoria Fundamentada , Humanos , Imageamento por Ressonância Magnética , Psicofisiologia/estatística & dados numéricos , Autorrelato/estatística & dados numéricos
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3285-3288, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018706

RESUMO

Currently, myoelectric prostheses lack dexterity and ease of control, in part because of inadequate schemes to extract relevant muscle features that can approximate muscle activation patterns that enable individuated dexterous finger motion. This project seeks to apply a novel algorithm pipeline that extracts muscle activation patterns from one limb, as well as from forearm muscles of the opposite limb, to predict muscle activation data of opposite limb intrinsic hand muscles, with the long-range goal of informing dexterous prosthetic control.


Assuntos
Desarticulação , Punho , Eletromiografia , Mãos , Músculo Esquelético
19.
Acta Crystallogr D Struct Biol ; 76(Pt 2): 102-117, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32038041

RESUMO

Ab initio reconstruction methods have revolutionized the capabilities of small-angle X-ray scattering (SAXS), allowing the data-driven discovery of previously unknown molecular conformations, exploiting optimization heuristics and assumptions behind the composition of globular molecules. While these methods have been successful for the analysis of small particles, their impact on fibrillar assemblies has been more limited. The micrometre-range size of these assemblies and the complex interaction of their periodicities in their scattering profiles indicate that the discovery of fibril structures from SAXS measurements requires novel approaches beyond extending existing tools for molecular discovery. In this work, it is proposed to use SAXS measurements, together with diffraction theory, to infer the electron distribution of the average cross-section of a fiber. This cross-section is modeled as a discrete electron density with continuous support, allowing representations beyond binary distributions. Additional constraints, such as non-negativity or smoothness/connectedness, can also be added to the framework. The proposed approach is tested using simulated SAXS data from amyloid ß fibril models and using measured data of Tobacco mosaic virus from SAXS experiments, recovering the geometry and density of the cross-sections in all cases. The approach is further tested by analyzing SAXS data from different amyloid ß fibril assemblies, with results that are in agreement with previously proposed models from cryo-EM measurements. The limitations of the proposed method, together with an analysis of the robustness of the method and the combination with different experimental sources, are also discussed.


Assuntos
Amiloide/química , Espalhamento a Baixo Ângulo , Vírus do Mosaico do Tabaco/química , Difração de Raios X/métodos , Algoritmos , Microscopia Crioeletrônica , Modelos Moleculares , Software
20.
Artigo em Inglês | MEDLINE | ID: mdl-33937429

RESUMO

INTRODUCTION: Electrocardiographic imaging (ECGI) requires a model of the torso, and inaccuracy in the position of the heart is a known source of error. We previously presented a method to localize the heart when body and heart surface potentials are known. The goal of this study is to extend this approach to only use body surface potentials. METHODS: We used an iterative coordinate descent optimization to estimate the positions of the heart for several consecutive heartbeats relying on the assumption that the epicardial potential sequence is the same in each beat. The method was tested with data synthesized using measurements from a isolated-heart, torso-tank preparation. Improvement was evaluated in terms of both heart localization and ECGI accuracy. RESULTS: The geometric correction resulted in cardiac geometries closely matching ground truth geometry. ECGI accuracy increased dramatically by all metrics using the corrected geometry. DISCUSSION: Future studies will employ more realistic animal models and then human subjects. Success could impact clinical ECGI by reducing errors from respiratory movement and perhaps decrease imaging requirements, reducing both cost and logistical difficulty of ECGI, widening clinical applicability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...