Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(4): e1010946, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099613

RESUMO

Fungi often adapt to environmental stress by altering their size, shape, or rate of cell division. These morphological changes require reorganization of the cell wall, a structural feature external to the cell membrane composed of highly interconnected polysaccharides and glycoproteins. Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that are typically secreted into the extracellular space to catalyze initial oxidative steps in the degradation of complex biopolymers such as chitin and cellulose. However, their roles in modifying endogenous microbial carbohydrates are poorly characterized. The CEL1 gene in the human fungal pathogen Cryptococcus neoformans (Cn) is predicted by sequence homology to encode an LPMO of the AA9 enzyme family. The CEL1 gene is induced by host physiological pH and temperature, and it is primarily localized to the fungal cell wall. Targeted mutation of the CEL1 gene revealed that it is required for the expression of stress response phenotypes, including thermotolerance, cell wall integrity, and efficient cell cycle progression. Accordingly, a cel1Δ deletion mutant was avirulent in two models of C. neoformans infection. Therefore, in contrast to LPMO activity in other microorganisms that primarily targets exogenous polysaccharides, these data suggest that CnCel1 promotes intrinsic fungal cell wall remodeling events required for efficient adaptation to the host environment.


Assuntos
Criptococose , Cryptococcus neoformans , Polissacarídeos Fúngicos , Termotolerância , Humanos , Oxigenases de Função Mista/genética , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Parede Celular/metabolismo
2.
PLoS Pathog ; 18(6): e1010195, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737716

RESUMO

Copper homeostasis mechanisms are essential for microbial adaption to changing copper levels within the host during infection. In the opportunistic fungal pathogen Cryptococcus neoformans (Cn), the Cn Cbi1/Bim1 protein is a newly identified copper binding and release protein that is highly induced during copper limitation. Recent studies demonstrated that Cbi1 functions in copper uptake through the Ctr1 copper transporter during copper limitation. However, the mechanism of Cbi1 action is unknown. The fungal cell wall is a dynamic structure primarily composed of carbohydrate polymers, such as chitin and chitosan, polymers known to strongly bind copper ions. We demonstrated that Cbi1 depletion affects cell wall integrity and architecture, connecting copper homeostasis with adaptive changes within the fungal cell wall. The cbi1Δ mutant strain possesses an aberrant cell wall gene transcriptional signature as well as defects in chitin / chitosan deposition and exposure. Furthermore, using Cn strains defective in chitosan biosynthesis, we demonstrated that cell wall chitosan modulates the ability of the fungal cell to withstand copper stress. Given the previously described role for Cbi1 in copper uptake, we propose that this copper-binding protein could be involved in shuttling copper from the cell wall to the copper transporter Ctr1 for regulated microbial copper uptake.


Assuntos
Quitosana , Criptococose , Cryptococcus neoformans , Parede Celular/metabolismo , Quitina/metabolismo , Quitosana/metabolismo , Cobre/metabolismo , Proteínas de Transporte de Cobre , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Homeostase
3.
Infect Immun ; 90(6): e0058021, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35587201

RESUMO

Many successful pathogens cause latent infections, remaining dormant within the host for years but retaining the ability to reactivate to cause symptomatic disease. The human opportunistic fungal pathogen Cryptococcus neoformans establishes latent pulmonary infections in immunocompetent individuals upon inhalation from the environment. These latent infections are frequently characterized by granulomas, or foci of chronic inflammation, that contain dormant and persistent cryptococcal cells. Immunosuppression can cause these granulomas to break down and release fungal cells that proliferate, disseminate, and eventually cause lethal cryptococcosis. This course of fungal latency and reactivation is understudied due to limited models, as chronic pulmonary granulomas do not typically form in mouse cryptococcal infections. A loss-of-function mutation in the Cryptococcus-specific MAR1 gene was previously described to alter cell surface remodeling in response to host signals. Here, we demonstrate that the mar1Δ mutant strain persists long term in a murine inhalation model of cryptococcosis, inducing a chronic pulmonary granulomatous response. We find that murine infections with the mar1Δ mutant strain are characterized by reduced fungal burden, likely due to the low growth rate of the mar1Δ mutant strain at physiological temperature, and an altered host immune response, likely due to inability of the mar1Δ mutant strain to properly employ virulence factors. We propose that this combination of features in the mar1Δ mutant strain collectively promotes the induction of a more chronic inflammatory response and enables long-term fungal persistence within these granulomatous regions.


Assuntos
Criptococose , Cryptococcus neoformans , Infecção Latente , Animais , Criptococose/microbiologia , Modelos Animais de Doenças , Inflamação , Pulmão , Camundongos
4.
Angew Chem Int Ed Engl ; 60(48): 25436-25444, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34549520

RESUMO

Lamellar phases of alkyldiacetylenes in which the alkyl chains lie parallel to the substrate represent a straightforward means for scalable 1-nm-resolution interfacial patterning. This capability has the potential for substantial impacts in nanoscale electronics, energy conversion, and biomaterials design. Polymerization is required to set the 1-nm functional patterns embedded in the monolayer, making it important to understand structure-function relationships for these on-surface reactions. Polymerization can be observed for certain monomers at the single-polymer scale using scanning probe microscopy. However, substantial restrictions on the systems that can be effectively characterized have limited utility. Here, using a new multi-scale approach, we identify a large, previously unreported difference in polymerization efficiency between the two most widely used commercial diynoic acids. We further identify a core design principle for maximizing polymerization efficiency in these on-surface reactions, generating a new monomer that also exhibits enhanced polymerization efficiency.

6.
Langmuir ; 34(4): 1353-1362, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29341626

RESUMO

Noncovalent monolayer chemistries are often used to functionalize 2D materials. Nanoscopic ligand ordering has been widely demonstrated (e.g., lying-down lamellar phases of functional alkanes); however, combining this control with micro- and macroscopic patterning for practical applications remains a significant challenge. A few reports have demonstrated that standing phase Langmuir films on water can be converted into nanoscopic lying-down molecular domains on 2D substrates (e.g., graphite), using horizontal dipping (Langmuir-Schaefer, LS, transfer). Molecular patterns are known to form at scales up to millimeters in Langmuir films, suggesting the possibility of transforming such structures into functional patterns on 2D materials. However, to our knowledge, this approach has not been investigated, and the rules governing LS conversion are not well understood. In part, this is because the conversion process is mechanistically very different from classic LS transfer of standing phases; challenges also arise due to the need to characterize structure in noncovalently adsorbed ligand layers <0.5 nm thick, at scales ranging from millimeters to nanometers. Here, we show that scanning electron microscopy enables diynoic acid lying-down phases to be imaged across this range of scales; using this structural information, we establish conditions for LS conversion to create hierarchical microscopic and nanoscopic functional patterns. Such control opens the door to tailoring noncovalent surface chemistry of 2D materials to pattern local interactions with the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...