Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Educ ; 101(2): 514-520, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-39070090

RESUMO

Single-molecule localization microscopy (SMLM) has revolutionized our ability to visualize cellular structures, offering unprecedented detail. However, the intricate biophysical principles that underlie SMLM can be daunting for newcomers, particularly undergraduate and graduate students. To address this challenge, we introduce the fundamental concepts of SMLM, providing a solid theoretical foundation. In addition, we have developed an intuitive graphical interface APP that simplifies these core concepts, making them more accessible for students. This APP clarifies how super-resolved images are fitted and highlights the crucial factors determining image quality. Our approach deepens students' understanding of SMLM by combining theoretical instruction with practical learning. This development equips them with the skills to carry out single-molecule super-resolved experiments and explore the microscopic world beyond the diffraction limit.

2.
Chem Biomed Imaging ; 2(5): 331-344, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38817319

RESUMO

The introduction of super-resolution microscopy (SRM) has significantly advanced our understanding of cellular and molecular dynamics, offering a detailed view previously beyond our reach. Implementing SRM in biophysical research, however, presents numerous challenges. This review addresses the crucial aspects of utilizing SRM effectively, from selecting appropriate fluorophores and preparing samples to analyzing complex data sets. We explore recent technological advancements and methodological improvements that enhance the capabilities of SRM. Emphasizing the integration of SRM with other analytical methods, we aim to overcome inherent limitations and expand the scope of biological insights achievable. By providing a comprehensive guide for choosing the most suitable SRM methods based on specific research objectives, we aim to empower researchers to explore complex biological processes with enhanced precision and clarity, thereby advancing the frontiers of biophysical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA