Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338094

RESUMO

Traits such as shape, size, and color often influence the economic and sentimental value of a horse. Around the world, horses are bred and prized for the colors and markings that make their unique coat patterns stand out from the crowd. The underlying genetic mechanisms determining the color of a horse's coat can vary greatly in their complexity. For example, only two genetic markers are used to determine a horse's base coat color, whereas over 50 genetic variations have been discovered to cause white patterning in horses. Some of these white-causing mutations are benign and beautiful, while others have a notable impact on horse health. Negative effects range from slightly more innocuous defects, like deafness, to more pernicious defects, such as the lethal developmental defect incurred when a horse inherits two copies of the Lethal White Overo allele. In this review, we explore, in detail, the etiology of white spotting and its overall effect on the domestic horse to Spot the Pattern of these beautiful (and sometimes dangerous) white mutations.

2.
Animals (Basel) ; 14(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338160

RESUMO

The influence of a horse's appearance on health, sentimental and monetary value has driven the desire to understand the etiology of coat color. White markings on the coat define inclusion for multiple horse breeds, but they may disqualify a horse from registration in other breeds. In domesticated horses (Equus caballus), 35 KIT alleles are associated with or cause depigmentation and white spotting. It is a common misconception among the general public that a horse can possess only two KIT variants. To correct this misconception, we used BEAGLE 5.4-phased NGS data to identify 15 haplotypes possessing two or more KIT variants previously associated with depigmentation phenotypes. We sourced photos for 161 horses comprising 12 compound genotypes with three or more KIT variants and employed a standardized method to grade depigmentation, yielding average white scores for each unique compound genotype. We found that 7 of the 12 multi-variant haplotypes resulted in significantly more depigmentation relative to the single-variant haplotypes (ANOVA). It is clear horses can possess more than two KIT variants, and future work aims to document phenotypic variations for each compound genotype.

3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38134209

RESUMO

Computer vision (CV), a non-intrusive and cost-effective technology, has furthered the development of precision livestock farming by enabling optimized decision-making through timely and individualized animal care. The availability of affordable two- and three-dimensional camera sensors, combined with various machine learning and deep learning algorithms, has provided a valuable opportunity to improve livestock production systems. However, despite the availability of various CV tools in the public domain, applying these tools to animal data can be challenging, often requiring users to have programming and data analysis skills, as well as access to computing resources. Moreover, the rapid expansion of precision livestock farming is creating a growing need to educate and train animal science students in CV. This presents educators with the challenge of efficiently demonstrating the complex algorithms involved in CV. Thus, the objective of this study was to develop ShinyAnimalCV, an open-source cloud-based web application designed to facilitate CV teaching in animal science. This application provides a user-friendly interface for performing CV tasks, including object segmentation, detection, three-dimensional surface visualization, and extraction of two- and three-dimensional morphological features. Nine pre-trained CV models using top-view animal data are included in the application. ShinyAnimalCV has been deployed online using cloud computing platforms. The source code of ShinyAnimalCV is available on GitHub, along with detailed documentation on training CV models using custom data and deploying ShinyAnimalCV locally to allow users to fully leverage the capabilities of the application. ShinyAnimalCV can help to support the teaching of CV, thereby laying the groundwork to promote the adoption of CV in the animal science community.


The integration of cameras and data science has great potential to revolutionize livestock production systems, making them more efficient and sustainable by replacing human-based management with real-time individualized animal care. However, applying these digital tools to animal data presents challenges that require computer programming and data analysis skills, as well as access to computing resources. Additionally, there is a growing need to train animal science students to analyze image or video data using data science algorithms. However, teaching computer programming to all types of students from the ground up can prove complicated and challenging. Therefore, the objective of this study was to develop ShinyAnimalCV, a user-friendly online web application that supports users to learn the application of data science to analyze animal digital video data, without the need for complex coding. The application includes nine pre-trained models for detecting and segmenting animals in image data and can be easily accessed through a web browser. We have also made the source code and detailed documentation available online for advanced users who wish to use the application locally. This software tool facilitates the teaching of digital animal data analysis in the animal science community, with potential benefits to livestock production systems.


Assuntos
Computação em Nuvem , Imageamento Tridimensional , Animais , Imageamento Tridimensional/veterinária , Software , Computadores , Criação de Animais Domésticos , Gado
4.
Genes (Basel) ; 14(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38002953

RESUMO

White spotting is an iconic feature of the American Paint Horse. The American Paint Horse Association (APHA) is dedicated to recording pedigree and performance of this stock-type breed, while preserving its distinctive coat color and conformation. Here, the depigmented proportion of the coat (% white coat) was measured using digital photograph analysis of 1195 registered American Paint Horses. Genotypes for nine white-spotting polymorphisms commonly found in Paint Horses, and two pigment-producing loci MCIR and ASIP genes, were also provided by the APHA. White-coat percent significantly increased in horses with more white-spotting alleles present, regardless of the number of loci bearing those alleles, likely due to a strong additive genetic effect at each white-spotting locus, as well as an additive epistatic effect among white spotting loci. Paint Horses with a chestnut base coat color (genotype e/e at MC1R) possessed a significantly higher white coat percentage, suggesting confirming an epistatic interaction between pigmentation signaling genes and loci for white spotting. The APHA registry categories of Regular versus Solid Paint-Bred also differed in their median white coat percentage (p < 0.0001), but not in the overall ranges of this phenotype, reenforcing the importance of the regional patterns of the depigmentation in the definition of the desired APHA phenotype. Multi-locus phenotype prediction models for white-coat percentage performed only moderately well, and improvements in the sample size and the number of loci genotyped will likely be needed before such an approach could be used practically by APHA breeders. In the future, models that enable phenotype prediction based on genotypes, and automated phenotype assessment could increase the production of valuable visual traits in the American Paint Horse population and improve the APHA member experience during the registration process.


Assuntos
Epistasia Genética , Pigmentação , Cavalos/genética , Animais , Estados Unidos , Alelos , Fenótipo , Genótipo , Pigmentação/genética
5.
J Equine Vet Sci ; 128: 104875, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406837

RESUMO

Mutations causing depigmentation are relatively common in Equus caballus (horse). Over 40 alleles in multiple genes are associated with increased white spotting (as of February 2023). The splashed white phenotype, a coat spotting pattern described as appearing like the horse has been splashed with white paint, was previously associated with variants in the PAX3 and MITF genes. Both genes encode transcription factors known to control melanocyte migration and pigmentation. We report two novel mutations, a stop-gain mutation in PAX3 (XM_005610643.3:c.927C>T, ECA6:11,196,181, EquCab3.0) and a missense mutation in a binding domain of MITF (NM_001163874.1:c.993A>T, ECA16:21,559,940, EquCab3.0), each with a strong association with increased depigmentation in Pura Raza Española horses (P = 1.144E-11, N = 30, P = 4.441E-16, N = 39 respectively). Using a quantitative method to score depigmentation, the PAX3 and MITF mutations were found to have average white scores of 25.50 and 24.45, respectively, compared to the average white coat spotting score of 1.89 in the control set. The functional impact for each mutation was predicted to be moderate to extreme (I-TASSER, SMART, Variant Effect Predictor, SIFT). We propose to designate the MITF mutant allele as Splashed White 9 and the PAX3 mutant allele as Splashed White 10 per convention.


Assuntos
Cor de Cabelo , Pigmentação , Cavalos/genética , Animais , Cor de Cabelo/genética , Pigmentação/genética , Fenótipo
6.
J Equine Vet Sci ; 127: 104563, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37182614

RESUMO

Mutations in KIT, a gene that influences melanoblast migration and pigmentation, often result in mammalian white spotting. As of February 2023, over 30 KIT variants associated with white spotting were documented in Equus caballus (horse). Here we report an association of increased white spotting on the skin and coat with a variant in the 5'UTR of KIT (rs1149701677: g.79,618,649A>C). Horses possessing at least one alternate allele demonstrate phenotypic characteristics similar to other KIT mutations: clear borders around unpigmented regions on the body, face, and limbs. Using a quantitative measure of depigmentation, we observed an average white score of 10.70 among individuals with rs1149701677, while the average score of the control, homozygous reference sample was 2.23 (P = 1.892e-11, n = 109, t-test). The rs1149701677 site has a cross-species conservation score of 3.4, one of the highest scores across the KIT 5'UTR, implying regulatory importance for this site. Ensembl also predicted a "moderately impactful" functional effect for the rs1149701677 variant. We propose that this single nucleotide variant likely alters the regulation of KIT, which in turn may disrupt melanoblast migration causing an increase in white spotting on the coat. Alternatively, the rs1149701677 variant may be in linkage with another nearby variant with an as-yet-undiscovered functional impact. We propose to term this new allele "Holiday White" or W35 based on conventional nomenclature.


Assuntos
Cor de Cabelo , Mamíferos , Cavalos/genética , Animais , Cor de Cabelo/genética , Regiões 5' não Traduzidas/genética , Mamíferos/genética
7.
Genes (Basel) ; 14(3)2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36980865

RESUMO

The startle response can be defined as a reflexive reaction to the sudden appearance of a novel stimulus that influences the survival and resilience of animals. In domesticated species, the behavioral component of the startle response can, in some cases, cause serious injury to the animal or human handlers if inappropriately expressed. Here, we describe a longitudinal study in a population of stock-type horses that quantified behavioral startle responses elicited by the presentation of a sudden novel object (rapidly opening umbrella). The study was performed in weanling foals across four consecutive years (n = 74, mean age = 256 days). Behavioral assays for the startle response phenotype focused on six behavioral variables: latency to return to the feed pan (seconds), maximum distance fled (meters), proportion of time spent walking or trotting (seconds), and how long a horse spent standing facing away from or toward the novel object. We observed behavioral startle response variables in relation to cardiac response, age, and sex for each individual. Each horse's cardiac startle response pattern was determined and categorized into heart rate response cluster groups identified as accelerators and decelerators. Using principal component analysis (PCA) with a factor rotation, we identified "startle response" phenotypes that summarize the behavioral and physiological variables. The largest component of variation, Factor 1, comprised 32.5% of the behavioral variable with a positive correlation with latency and distance, and was not influenced by sex or age. Factor 2 comprised 23.2% of the variation, and was positively correlated with activity level performed such as proportion of time spent walking and/or trotting. Horses with the accelerator type cardiac response had significantly higher Factor 1 scores than decelerators but did not differ in Factor 2. Future work includes expanding our sample size to conduct a genome-wide association study (GWAS) to identify novel genetic loci influencing behavioral startle reactions using recorded behavioral and physiological phenotypes.


Assuntos
Estudo de Associação Genômica Ampla , Reflexo de Sobressalto , Humanos , Animais , Cavalos/genética , Estudos Longitudinais , Reflexo de Sobressalto/genética , Fenótipo , Loci Gênicos
8.
Equine Vet J ; 55(3): 487-493, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35665534

RESUMO

BACKGROUND: Lavender foal syndrome (LFS) is a fatal hereditary condition that is inherited in an autosomal recessive pattern. This detrimental mutation is more common in Arabian foals of Egyptian origin than foals from other bloodlines. Heterozygous horses are carriers of the LFS trait and appear normal, while recessive homozygous foals died shortly after birth due to serious complications. In Egypt, in 2014, an Egyptian foal died after manifestations of neurological signs and abnormal coat colour as LFS signs. Therefore, it is important to identify LFS carriers in the population of Arabian horses in Egypt and to encourage improvement of the Arabian horse industry in Egypt by constructing a breeding system based on genetic background in order to avoid mating between carriers and reduce financial losses from deaths of affected foals. OBJECTIVES: To establish a PCR-based test for detecting the MYO5A gene mutation causing LFS in the registered Arabian horse population in Egypt prior to breeding. STUDY DESIGN: Cross sectional survey (n = 170) plus targeted sampling (n = 30). METHODS: A total of 200 samples were collected from an Arabian farm in Egypt and some of them were traced for LFS based on the farm records. The LFS genotypes were identified using the PCR-RFLP technique, fragment analysis followed by sequence analysis. RESULTS: The overall mutated allele and genotype frequencies (N/L) were 0.08 and 16%, respectively. CONCLUSION: The observed frequency of heterozygotes suggests foals affected with LFS will be produced among Arabian horses in Egypt. Therefore, screening of the entire population for this mutation should be undertaken in the breeding program.


Assuntos
Doenças dos Cavalos , Animais , Estudos Transversais , Egito/epidemiologia , Genótipo , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/genética , Cavalos , Miosina Tipo V/genética , Síndrome , Mutação
9.
Science ; 377(6611): 1172-1180, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074859

RESUMO

Donkeys transformed human history as essential beasts of burden for long-distance movement, especially across semi-arid and upland environments. They remain insufficiently studied despite globally expanding and providing key support to low- to middle-income communities. To elucidate their domestication history, we constructed a comprehensive genome panel of 207 modern and 31 ancient donkeys, as well as 15 wild equids. We found a strong phylogeographic structure in modern donkeys that supports a single domestication in Africa ~5000 BCE, followed by further expansions in this continent and Eurasia and ultimately returning to Africa. We uncover a previously unknown genetic lineage in the Levant ~200 BCE, which contributed increasing ancestry toward Asia. Donkey management involved inbreeding and the production of giant bloodlines at a time when mules were essential to the Roman economy and military.


Assuntos
Domesticação , Equidae , Genoma , África , Animais , Ásia , Equidae/classificação , Equidae/genética , Genômica , Humanos , Filogenia
10.
Animals (Basel) ; 12(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35953947

RESUMO

Over 40 identified genetic variants contribute to white spotting in the horse. White markings and spotting are under selection for their impact on the economic value of an equine, yet many phenotypes have an unknown genetic basis. Previous studies also demonstrate an interaction between MC1R and ASIP pigmentation loci and white spotting associated with KIT and MITF. We investigated two stallions presenting with a white spotting phenotype of unknown cause. Exon sequencing of the KIT and MITF candidate genes identified a missense variant in KIT (rs1140732842, NC_009146.3:g.79566881T>C, p.T391A) predicted by SIFT and PROVEAN as not tolerated/deleterious. Three independent observers generated an Average Grade of White (AGW) phenotype score for 147 individuals based on photographs. The KIT variant demonstrates a significant QTL association to AGW (p = 3.3 × 10−12). Association with the MC1R Extension locus demonstrated that, although not in LD, MC1R e/e (chestnut) individuals had higher AGW scores than MC1R E/- individuals (p = 3.09 × 10−17). We also report complete linkage of the previously reported KIT W19 allele to this missense variant. We propose to term this variant W34, following the standardized nomenclature for white spotting variants within the equine KIT gene, and report its epistatic interaction with MC1R.

12.
J Equine Vet Sci ; 113: 103910, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35196548

RESUMO

Pedigrees and horse written ancestry contain numerous inconsistencies and divergence between farm histories, owner accounts and registration records. In particular, the origins of the Brazilian Mangalarga, or "Mangalarga Paulista'' horse breed is controversial, and the breed's popular history claims that one of its most famous individuals, Turbante J.O., may have been sired by an unknown Hanoverian stallion. Turbante J.O. sired over 1678 offspring and is present in about 71% of the male pedigrees. We genotyped Turbante J.O. and 29 registered Mangalarga individuals using a commercially available ancestry service and compared genomic to pedigree-based estimates. DNA was extracted for this sire from frozen semen samples. Other breed-average genomic ancestries for the Arabian, Thoroughbred, Saddlebred, and Hanoverian were utilized for comparison. Pedigree-based inbreeding coefficient (Fped) of Turbante J.O. and the 17 other Mangalargas were analyzed, and while Turbante J.O.'s Fped is estimated to be 18.5%, the genomic-based inbreeding coefficient is 33%. Pedigree-based co-ancestry coefficients estimate that about 3% of his ancestry should reflect Thoroughbred and Arabian heritage, however, the genomic analysis of Turbante J.O. identified 100% Iberian ancestry, and 99% in common with other Mangalarga individuals followed by other autochthonous Brazilian breeds, with no evidence of Hanoverian parentage. We demonstrate higher pedigree-estimated inbreeding coefficient errors than previously reported, perhaps a result of the pedigree depth, and the ability of genomic ancestral analysis to answer questions that pedigree analyses cannot. Due to the genomic relatedness, these results may provide more detailed guidelines in maintaining genetic diversity in this breed through selective outbreeding.


Assuntos
Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Animais , Genoma , Genótipo , Cavalos/genética , Endogamia , Masculino
13.
Vet Immunol Immunopathol ; 243: 110353, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34839133

RESUMO

Laminitis results in impaired tissue integrity and Inflammation of the epidermal and dermal lamellae connecting the hoof capsule to the underlying distal phalanx and causes loss-of-use, poor quality of life and euthanasia in horses. Historically, studies to better understand the etiology of laminitis by documenting changes in gene expression were hampered by the paucity of gene annotation specific to hoof tissues. Next-generation sequencing enables improvements to annotation by incorporating equine- and hoof-specific transcripts. Here we characterize the hoof lamellar tissue transcriptome of naturally occurring supporting limb laminitis (SLL) using archived lamellar tissue from Thoroughbred racehorses consisting of 13 SLL hospital cases and seven age-matched control horses. This was achieved using: 1) Applied transcriptome annotation by long-read sequencing to document transcript diversity and 2) short-read RNA sequencing to document changes in gene expression correlating to the developmental and acute stages of naturally occurring SLL. 1.99Gbp of long-read transcriptome sequencing deeply documented 5067 unique loci, while short read RNA-seq under very stringent quality filters described 66 differentially expressed loci. Functional analysis of these loci revealed alterations in cell replication and growth, stress response and leukocyte recruitment and activation pathways. Differential expression of the Ezrin and TIMP3 genes suggests they may have utility as biomarkers for laminitis disease, while NR1D1 and genes relevant to the inflammasome are promising targets for novel pharmacological treatments.


Assuntos
Doenças do Pé , Casco e Garras , Doenças dos Cavalos , Coxeadura Animal/genética , Animais , Doenças do Pé/genética , Doenças do Pé/veterinária , Casco e Garras/patologia , Doenças dos Cavalos/genética , Cavalos , Inflamação/genética , Inflamação/veterinária , Qualidade de Vida , Transcriptoma
14.
Animals (Basel) ; 11(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34944156

RESUMO

Macrolide drugs are the treatment of choice for Rhodococcus equi infections, despite severe side-effects temporary anhidrosis as a. To better understand the molecular biology leading to macrolide induced anhidrosis, we performed skin biopsies and Quantitative Intradermal Terbutaline Sweat Tests (QITSTs) in six healthy pony-cross foals for three different timepoints during erythromycin administration-pre-treatment (baseline), during anhidrosis and post-recovery. RNA sequencing of biopsies followed by differential gene expression analysis compared both pre and post normal sweating timepoints to the erythromycin induced anhidrosis episode. After Bonferroni correction for multiple testing, 132 gene transcripts were significantly differentially expressed during the anhidrotic timepoint. Gene ontology analysis of the full differentially expressed gene set identified over-represented biological functions for ubiquitination and ion-channel function, both biologically relevant to sweat production. These same mechanisms were previously implicated in heritable equine idiopathic anhidrosis and sweat gland function and their involvement in macrolide-induced temporary anhidrosis warrants further investigation.

15.
PLoS One ; 16(12): e0260833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34905583

RESUMO

The traits of two subspecies of western honey bees, Apis mellifera scutellata and A.m. capensis, endemic to the Republic of South Africa (RSA), are of biological and commercial relevance. Nevertheless, the genetic basis of important phenotypes found in these subspecies remains poorly understood. We performed a genome wide association study on three traits of biological relevance in 234 A.m. capensis, 73 A.m. scutellata and 158 hybrid individuals. Thirteen markers were significantly associated to at least one trait (P ≤ 4.28 × 10-6): one for ovariole number, four for scutellar plate and eight for tergite color. We discovered two possible causative variants associated to the respective phenotypes: a deletion in GB46429 or Ebony (NC_007070.3:g.14101325G>del) (R69Efs*85) and a nonsense on GB54634 (NC_007076.3:g.4492792A>G;p.Tyr128*) causing a premature stop, substantially shortening the predicted protein. The mutant genotypes are significantly associated to phenotypes in A.m. capensis. Loss-of-function of Ebony can cause accumulation of circulating dopamine, and increased dopamine levels correlate to ovary development in queenless workers and pheromone production. Allelic association (P = 1.824 x 10-5) of NC_007076.3:g.4492792A>G;p.Tyr128* to ovariole number warrants further investigation into function and expression of the GB54634 gene. Our results highlight genetic components of relevant production/conservation behavioral phenotypes in honey bees.


Assuntos
Abelhas/genética , Reprodução/genética , Animais , Abelhas/anatomia & histologia , Comportamento , Dopamina/metabolismo , Genes de Insetos , Estudo de Associação Genômica Ampla , Genótipo , Mutação , Fenótipo , Feromônios/genética , Feromônios/metabolismo , África do Sul
16.
J Equine Vet Sci ; 106: 103756, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670706

RESUMO

Hereditary Equine Regional Dermal Asthenia (HERDA) is an autosomal recessive condition present in the American Quarter Horse and other related breeds. Resulting from a mutation in the peptidyl-prolyl cis-trans isomerase B (PPIB) gene, HERDA is homologous to Ehlers-Danlos syndrome in humans. Characterized by fragile, hyperelastic, skin, HERDA affected horses often present first with slow-healing wounds usually on the dorsum, and resulting in atrophic scars, seromas, and ulcers. As there is no treatment for the condition affected horses are typically reported to be unrideable, and if persistent wounds are sufficiently severe, may require euthanasia. This case report describes clinical presentation and genetic diagnostics of HERDA in an 8-year-old horse with notably mild clinical signs, previously undiagnosed. On recommendation from the referring veterinarian, the horse owners pursued genetic diagnostics for HERDA following development of painful dorsal skin lesions under the saddle area during a riding clinic. The individual was confirmed homozygous for HERDA c.115G>A missense mutation in the PPIB gene by commercial testing service (Etalon Diagnostics Inc.). Further objective studies on the severity and clinical presentation of HERDA are necessary to evaluate complex elements of this disease. Furthermore, mildly affected individuals may be underdiagnosed as a result of not demonstrating the clinical signs that commonly encourage genetic testing.


Assuntos
Astenia , Doenças dos Cavalos , Anormalidades da Pele , Animais , Astenia/diagnóstico , Astenia/veterinária , Eutanásia Animal , Homozigoto , Doenças dos Cavalos/diagnóstico , Cavalos , Humanos , Anormalidades da Pele/veterinária
17.
J Hered ; 112(5): 443-446, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34343312

RESUMO

Chestnut coat color in horses is determined by a missense mutation within the MC1R gene. However, the intensity of the chestnut color can vary widely within individuals possessing this genotype. Here, we investigated this variation using standardized photographs of 96 horses. Each horse was ranked lightest to darkest within the cohort for phenotype by 3 blinded observers. A genome-wide association study utilizing the relative shade ranking as the phenotype and using 268 487 single-nucleotide polymorphisms (SNPs) genotyped using the Affymetrix Equine 670k array identified a single significantly associated region on chromosome 3 (P = 2.934 × 10-8). Analysis of whole-genome sequences for horses spanning the diverse range of chestnut color identified candidate SNPs within the coding sequence of the only gene in the region: SALL1. The function of SALL1 is largely unknown, though it is predicted to interact with the Hermansky-Pudlak Syndrome type 1 (HPS1) protein, which causes partial albinism in humans. However, with only one study suggesting a circumstantial influence of the SALL1 protein on pigmentation, additional work is needed to confirm this new coat color locus in larger populations and investigate the function of this protein for impacts on equine health.


Assuntos
Estudo de Associação Genômica Ampla , Pigmentação , Animais , Genoma , Genótipo , Cavalos/genética , Fenótipo , Pigmentação/genética
19.
J Hered ; 112(5): 447-451, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34223905

RESUMO

Over 30 polymorphisms in the KIT Proto-Oncogene Receptor Tyrosine Kinase (KIT) gene have been implicated in white spotting patterns ranging from small areas to full dermal depigmentation in the horse. We performed a candidate-gene exon sequencing approach on KIT and MITF, 2 known causatives of white spotting patterns, within 2 families of horses of unknown white spotting. Family 1 (Fam1, N = 5) consisted of a Quarter Horse stallion and 4 offspring with white spotting pattern ranging from legs, lower ventral, and head regions with jagged borders, to almost complete white. The second family (Fam2, N = 7) consisted of 6 half-sibling American Paint Horse/Quarter Horse and their dam, demonstrating unpigmented limbs with belly spots and an extensive white patterning on the face. This approach resulted in 2 variants significantly associated with familial phenotypes, where Fam1 variant is an indel leading to a frameshift mutation, and Fam2 a non-synonymous SNP. We validated the variants within an unrelated population of horses (Fam2 variant, P = 0.00271944) as well as for protein functional impact with ExPASy, Protter, Phyre2, SMART, PROVEAN, SIFT, and I-TASSER, confirming the reported associations. Fam1 associated variant, deemed W31, alters the protein sequence, leading to an early stop codon truncating the normal amino acid sequence from 972 to just 115 amino acids. Fam2 associated variant, deemed W32, may have a subtle impact on receptor function or could be in linkage with a non-coding or regulatory change creating the mild spotting pattern observed in this family.


Assuntos
Cor de Cabelo , Proteínas Proto-Oncogênicas c-kit , Animais , Éxons , Ligação Genética , Cavalos/genética , Masculino , Fenótipo , Proteínas Proto-Oncogênicas c-kit/genética
20.
J Invest Dermatol ; 141(11): 2639-2645.e3, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34081968

RESUMO

Similar to humans, the horse relies predominantly on the evaporation of sweat from the skin surface to dissipate excess body heat. Loss of the sweat response or anhidrosis can result in life-threatening hyperthermia. Anhidrosis occurs more frequently in some breeds as well as occurs at an increased frequency among individuals with a family history, suggesting a heritable component to the pathology. Given the natural occurrence and indications of genetic components in the etiology, we utilized genomics to better understand the molecular mechanisms involved in sweat response. We performed a case-control (n = 200) GWAS targeting cases of chronic idiopathic anhidrosis in a controlled genetic background to discover the contributing regions and interrogated gene function for roles in the sweating mechanism. A region containing the KCNE4 gene, which encodes the ß-subunit of a potassium channel protein with a possible function in sweat gland outflow, was associated (P = 1.13 × 10-07) with chronic idiopathic anhidrosis through GWAS. A candidate mutation (NC_009149.3:g.11813731A > G, rs68643109) disrupting the KCNE4 protein structure could explain the disease but requires further investigation in larger populations. We show the potential role of ion channels and cellular damage in sweat response, correlating anhidrosis as a possible effect of congenital channelopathy.


Assuntos
Hipo-Hidrose/genética , Canais de Potássio/fisiologia , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Cavalos , Hipo-Hidrose/etiologia , Masculino , Subunidades Proteicas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...