Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 96(9): 3254-3263, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453753

RESUMO

This study assessed the effects of 3 commercial organic acid (OA) preparations on growth performance, intestinal morphology, cecal microbiology, and immunity of Escherichia coli K88-challenged (ETEC) broiler chickens. One thousand one-day-old male broiler chickens were divided into 8 treatments of 5 replicate pens: Negative control (NC) birds received a basal diet (BD) and were not challenged with ETEC; positive control (PC) birds fed the BD and challenged with ETEC; BD + 0.2% (S1) or 0.4% (S2) of an OA mixture (Salkil) from one to 35 d; BD + 0.1, 0.075, and 0.05% (O1) of another OA mixture (Optimax) in the starter (one to 10 d), grower (11 to 24 d), and finisher (25 to 35 d) diets, respectively, or 0.1% (O2) from one to 35 d; BD + 0.07, 0.05, and 0.05% (P1) or 0.1, 0.07, and 0.05% (P2) of a further OA mixture (pHorce) in the starter, grower, and finisher diets, respectively. All groups (not NC) were challenged with one mL of ETEC (1 × 108 cfu/mL) at 7 d of age. The 3 OA mixtures are commercial formic and propionic acid preparations. Birds challenged with ETEC (PC) had reduced (P < 0.05) growth performance, ileal morphological parameters (not crypt depth, which was increased), cecal lactobacilli, and immune responses, and increased cecal E. coli compared with unchallenged, NC birds. The addition of OA to the diets of ETEC challenged birds (S1-P2) either numerically or significantly (P < 0.05) improved growth performance, ileal morphology and immune responses, increased cecal lactobacilli, and reduced cecal E. coli. For most OA additions, the assessed parameters were generally enhanced to equivalence to NC birds. The results suggest that dietary OA supplementation can enhance the growth performance, ileal morphology, cecal microbiota, and immunity of ETEC-challenged broilers to an extent that, under such circumstances, the formulations used in this study provided similar performance and assessed parameters as non-challenged birds.


Assuntos
Galinhas , Infecções por Escherichia coli/veterinária , Formiatos/metabolismo , Imunidade Inata , Doenças das Aves Domésticas/tratamento farmacológico , Propionatos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Ceco/microbiologia , Galinhas/anatomia & histologia , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Escherichia coli/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/imunologia , Formiatos/administração & dosagem , Intestinos/anatomia & histologia , Masculino , Doenças das Aves Domésticas/imunologia , Propionatos/administração & dosagem , Distribuição Aleatória
2.
Animal ; 5(8): 1170-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22440169

RESUMO

A 2 × 2 factorial experiment was conducted to determine the effects of rearing environment (indoor (In) v. outdoor (Out)) and dietary zinc oxide (ZnO) supplementation (0 (-Zn) v. 3100 (+Zn) mg/kg feed) on the response of weaned pigs to a challenge infection with enterotoxigenic Escherichia coli (ETEC). Pigs from the two rearing environments were weaned onto trial diets at 4 weeks of age, moved into conventional accommodation and infected 3 days later with 109 CFU ETEC per os. Faecal ETEC shedding was determined before and after challenge. After 7 days of ETEC infection, all pigs were euthanized for gut lactic acid bacteria (LAB)-to-coliform ratio, pH and small intestine morphological measurements. Both ZnO and outdoor rearing reduced ETEC excretion, and these effects were additive. Outdoor rearing increased small intestine and colon tissue weight. ZnO increased villus height and goblet cell number in the upper small intestine, LAB-to-coliform ratio (through reduced coliforms) in the lower small intestine and proximal colon, and improved growth performance. There were interactive effects of rearing environment and ZnO supplementation on upper small intestine villus height and daily gain, as outdoor rearing conferred advantages on these variables only with ZnO dietary supplementation. Daily gains were 233, 174, 277 and 347 (s.e.m. 27.2) g/day for the In - Zn, Out - Zn, In + Zn and Out + Zn, respectively. These results suggest different, but complementary mechanisms of intestinal health and performance in outdoor-reared pigs and those offered ZnO supplemented diets. The results indicate that the benefits of ZnO to the weaned pig extend beyond suppression of ETEC and appear mediated through altered development of the small intestine mucosa.

3.
Res Vet Sci ; 80(1): 45-54, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15946717

RESUMO

The objective of this study was to determine the effects of zinc oxide (ZnO) and the probiotic Enterococcus faecium SF68 (Cylactin) dietary supplementation on the performance, intestinal microbiota and immune parameters of the weaned piglet reared under commercial conditions. The diets were devoid of antibiotic growth promoters (AGP). Two hundred and eight crossbred piglets were allocated to a 2 x 2 factorial experiment involving two levels of zinc oxide supplementation (0 or 3100 mg ZnO/kg feed), and two levels of E. faecium SF68 supplementation (0 or 1.4 x 10(9)CFU/kg feed (Cylactin ME10)). The diets were offered ad libitum for 20 days post-weaning. Piglet performance was assessed by calculating average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR) on a pen basis. In addition, components of the distal ileal digesta, tissue-associated and mesenteric lymph node (MLN) bacterial populations were enumerated and serum immunoglobulin G (IgG) and intestinal immunoglobulin A (IgA) concentrations were determined on days 6 and 20 post-weaning. Regression analysis was used to determine the relationship between the bacterial populations at the different sites. Supplementation of the post-weaning diet with either ZnO or E. faecium SF68 did not affect piglet performance. E. faecium SF68 did not affect gastrointestinal bacterial populations but did tend to reduce serum IgG (P<0.1) on day 20. Zinc oxide reduced anaerobic (P<0.05) and tended to decrease lactic acid (P<0.1) bacterial translocation to the MLN, and tended to increase intestinal IgA concentration (P<0.1) on day 20. Generally, luminal bacterial populations were found to be poor predictors of tissue-associated or MLN populations. ZnO and E. faecium SF68 dietary supplementation were ineffective under these trial conditions. Further investigations into the possible immunomodulator role of dietary ZnO are warranted.


Assuntos
Suplementos Nutricionais , Enterococcus faecium/fisiologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Probióticos/farmacologia , Suínos/imunologia , Óxido de Zinco/farmacologia , Animais , Feminino , Imunoglobulina A/análise , Imunoglobulina G/sangue , Modelos Logísticos , Masculino , Suínos/fisiologia , Desmame
4.
Glycobiology ; 11(11): 997-1008, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11744634

RESUMO

The presence of alpha2,8-linked polysialic acid on the neural cell adhesion molecule (NCAM) is known to modulate cell interactions during development and oncogenesis. Two enzymes, the alpha2,8-polysialyltransferases ST8Sia IV()/PST and ST8Sia II()/STX are responsible for the polysialylation of NCAM. We previously reported that both ST8Sia IV/PST and ST8Sia II/STX enzymes are themselves modified by alpha2,8-linked polysialic acid chains, a process called autopolysialylation. In the case of ST8Sia IV/PST, autopolysialylation is not required for enzymatic activity. However, whether the autopolysialylation of ST8Sia II/STX is required for its ability to polysialylate NCAM is unknown. To understand how autopolysialylation impacts ST8Sia II/STX enzymatic activity, we employed a mutagenesis approach. We found that ST8Sia II/STX is modified by six Asn-linked oligosaccharides and that polysialic acid is distributed among the oligosaccharides modifying Asn 89, 219, and 234. Coexpression of a nonautopolysialylated ST8Sia II/STX mutant with NCAM demonstrated that autopolysialylation is not required for ST8Sia II/STX polysialyltransferase activity. In addition, catalytically active, nonautopolysialylated ST8Sia II/STX does not polysialylate any endogenous COS-1 cell proteins, highlighting the protein specificity of polysialylation. Furthermore, immunoblot analysis of NCAM polysialylation by autopolysialylated and nonautopolysialylated ST8Sia II/STX suggests that the NCAM is polysialylated to a higher degree by autopolysialylated ST8Sia II/STX. Therefore, we conclude that autopolysialylation of ST8Sia II/STX, like that of ST8Sia IV/PST, is not required for, but does enhance, NCAM polysialylation.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Animais , Asparagina/química , Sequência de Bases , Sítios de Ligação , Células COS , DNA Complementar/genética , Glicosilação , Mutagênese Sítio-Dirigida , Oligossacarídeos/química , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sialiltransferases/química , Sialiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA