Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Clim Chang ; 14(4): 387-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617202

RESUMO

Higher temperatures are expected to reduce species coexistence by increasing energetic demands. However, flexible foraging behaviour could balance this effect by allowing predators to target specific prey species to maximize their energy intake, according to principles of optimal foraging theory. Here we test these assumptions using a large dataset comprising 2,487 stomach contents from six fish species with different feeding strategies, sampled across environments with varying prey availability over 12 years in Kiel Bay (Baltic Sea). Our results show that foraging shifts from trait- to density-dependent prey selectivity in warmer and more productive environments. This behavioural change leads to lower consumption efficiency at higher temperature as fish select more abundant but less energetically rewarding prey, thereby undermining species persistence and biodiversity. By integrating this behaviour into dynamic food web models, our study reveals that flexible foraging leads to lower species coexistence and biodiversity in communities under global warming.

2.
Trends Ecol Evol ; 39(5): 427-434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38310065

RESUMO

At macroecological scales, the provision of Nature's contributions to people (NCP) is mostly estimated with biophysical information, ignoring the ecological processes underlying them. This hinders our ability to properly quantify the impact of declining biodiversity and the provision of NCP. Here, we propose a framework that combines local-scale food web energy flux approaches and large-scale biodiversity models to evaluate ecosystem functions and flux-related NCP at extensive spatiotemporal scales. Importantly, this approach has the potential to upscale ecosystem functions, assess the vulnerability of flux-related NCP to the climate crisis, and support the development of multiscale mitigation policies.


Assuntos
Biodiversidade , Ecossistema , Humanos , Mudança Climática , Cadeia Alimentar , Conservação dos Recursos Naturais , Modelos Biológicos
3.
Sci Data ; 11(1): 236, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396055

RESUMO

The dataset presents a compilation of stomach contents from six demersal fish species from two functional groups inhabiting the Baltic Sea. It includes detailed information on prey identities, body masses, and biomasses recovered from both the fish's digestive systems and their surrounding environment. Environmental parameters, such as salinity and temperature levels, have been integrated to enrich this dataset. The juxtaposition of information on prey found in stomachs and in the environment provides an opportunity to quantify trophic interactions across different environmental contexts and investigate how fish foraging behaviour adapts to changes in their environment, such as an increase in temperature. The compilation of body mass and taxonomic information for all species allows approaching these new questions using either a taxonomic (based on species identity) or functional trait (based on body mass) approach.


Assuntos
Peixes , Conteúdo Gastrointestinal , Animais , Países Bálticos , Oceanos e Mares
4.
Ecol Lett ; 27(1): e14338, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030225

RESUMO

Understanding the mechanisms underlying diversity-productivity relationships (DPRs) is crucial to mitigating the effects of forest biodiversity loss. Tree-tree interactions in diverse communities are fundamental in driving growth rates, potentially shaping the emergent DPRs, yet remain poorly explored. Here, using data from a large-scale forest biodiversity experiment in subtropical China, we demonstrated that changes in individual tree productivity were driven by species-specific pairwise interactions, with higher positive net pairwise interaction effects on trees in more diverse neighbourhoods. By perturbing the interactions strength from empirical data in simulations, we revealed that the positive differences between inter- and intra-specific interactions were the critical determinant for the emergence of positive DPRs. Surprisingly, the condition for positive DPRs corresponded to the condition for coexistence. Our results thus provide a novel insight into how pairwise tree interactions regulate DPRs, with implications for identifying the tree mixtures with maximized productivity to guide forest restoration and reforestation efforts.


Assuntos
Florestas , Árvores , Árvores/fisiologia , Biodiversidade , China , Ecossistema
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220368, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899020

RESUMO

Artificial light at night (ALAN) is eroding natural light cycles and thereby changing species distributions and activity patterns. Yet little is known about how ecological interaction networks respond to this global change driver. Here, we assess the scientific basis of the current understanding of community-wide ALAN impacts. Based on current knowledge, we conceptualize and review four major pathways by which ALAN may affect ecological interaction networks by (i) impacting primary production, (ii) acting as an environmental filter affecting species survival, (iii) driving the movement and distribution of species, and (iv) changing functional roles and niches by affecting activity patterns. Using an allometric-trophic network model, we then test how a shift in temporal activity patterns for diurnal, nocturnal and crepuscular species impacts food web stability. The results indicate that diel niche shifts can severely impact community persistence by altering the temporal overlap between species, which leads to changes in interaction strengths and rewiring of networks. ALAN can thereby lead to biodiversity loss through the homogenization of temporal niches. This integrative framework aims to advance a predictive understanding of community-level and ecological-network consequences of ALAN and their cascading effects on ecosystem functioning. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Ecossistema , Poluição Luminosa , Cadeia Alimentar , Biodiversidade , Fotoperíodo , Luz
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220359, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899019

RESUMO

Artificial light at night (ALAN) is predicted to have far-reaching consequences for natural ecosystems given its influence on organismal physiology and behaviour, species interactions and community composition. Movement and predation are fundamental ecological processes that are of critical importance to ecosystem functioning. The natural movements and foraging behaviours of nocturnal invertebrates may be particularly sensitive to the presence of ALAN. However, we still lack evidence of how these processes respond to ALAN within a community context. We assembled insect communities to quantify their movement activity and predation rates during simulated Moon cycles across a gradient of diffuse night-time illuminance including the full range of observed skyglow intensities. Using radio frequency identification, we tracked the movements of insects within a fragmented grassland Ecotron experiment. We additionally quantified predation rates using prey dummies. Our results reveal that even low-intensity skyglow causes a temporal shift in movement activity from day to night, and a spatial shift towards open habitats at night. Changes in movement activity are associated with indirect shifts in predation rates. Spatio-temporal shifts in movement and predation have important implications for ecological networks and ecosystem functioning, highlighting the disruptive potential of ALAN for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Ecossistema , Poluição Luminosa , Animais , Comportamento Predatório , Invertebrados , Luz , Insetos
7.
Ecol Lett ; 26(10): 1792-1802, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37553981

RESUMO

Plant community productivity generally increases with biodiversity, but the strength of this relationship exhibits strong empirical variation. In meta-food-web simulations, we addressed if the spatial overlap in plants' resource access and animal space-use can explain such variability. We found that spatial overlap of plant resource access is a prerequisite for positive diversity-productivity relationships, but causes exploitative competition that can lead to competitive exclusion. Space-use of herbivores causes apparent competition among plants, resulting in negative relationships. However, space-use of larger top predators integrates sub-food webs composed of smaller species, offsetting the negative effects of exploitative and apparent competition and leading to strongly positive diversity-productivity relationships. Overall, our results show that spatial overlap of plants' resource access and animal space-use can greatly alter the strength and sign of such relationships. In particular, the scaling of animal space-use effects opens new perspectives for linking landscape processes without effects on biodiversity to productivity patterns.


Assuntos
Biodiversidade , Ecossistema , Animais , Cadeia Alimentar , Plantas , Herbivoria , Biomassa
8.
J Environ Manage ; 345: 118510, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390732

RESUMO

Wastewater treatment plants (WWTPs) have greatly improved water quality globally. However, treated effluents still contain a complex cocktail of pollutants whose environmental effects might go unnoticed, masked by additional stressors in the receiving waters or by spatiotemporal variability. We conducted a BACI (Before-After/Control-Impact) ecosystem manipulation experiment, where we diverted part of the effluent of a large tertiary WWTP into a small, unpolluted stream to assess the effects of a well-treated and highly diluted effluent on riverine diversity and food web dynamics. We sampled basal food resources, benthic invertebrates and fish to search for changes on the structure and energy transfer of the food web with the effluent. Although effluent toxicity was low, it reduced diversity, increased primary production and herbivory, and reduced energy fluxes associated to terrestrial inputs. Altogether, the effluent decreased total energy fluxes in stream food webs, showing that treated wastewater can lead to important ecosystem-level changes, affecting the structure and functioning of stream communities even at high dilution rates. The present study shows that current procedures to treat wastewater can still affect freshwater ecosystems and highlights the need for further efforts to treat polluted waters to conserve aquatic food webs.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Ecossistema , Cadeia Alimentar , Poluentes Químicos da Água/análise , Rios/química
9.
Mov Ecol ; 11(1): 27, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37194049

RESUMO

Movement facilitates and alters species interactions, the resulting food web structures, species distribution patterns, community structures and survival of populations and communities. In the light of global change, it is crucial to gain a general understanding of how movement depends on traits and environmental conditions. Although insects and notably Coleoptera represent the largest and a functionally important taxonomic group, we still know little about their general movement capacities and how they respond to warming. Here, we measured the exploratory speed of 125 individuals of eight carabid beetle species across different temperatures and body masses using automated image-based tracking. The resulting data revealed a power-law scaling relationship of average movement speed with body mass. By additionally fitting a thermal performance curve to the data, we accounted for the unimodal temperature response of movement speed. Thereby, we yielded a general allometric and thermodynamic equation to predict exploratory speed from temperature and body mass. This equation predicting temperature-dependent movement speed can be incorporated into modeling approaches to predict trophic interactions or spatial movement patterns. Overall, these findings will help improve our understanding of how temperature effects on movement cascade from small to large spatial scales as well as from individual to population fitness and survival across communities.

10.
Glob Chang Biol ; 29(13): 3747-3758, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186484

RESUMO

Anthropogenic global warming has major implications for mobile terrestrial insects, including long-term effects from constant warming, for example, on species distribution patterns, and short-term effects from heat extremes that induce immediate physiological responses. To cope with heat extremes, they either have to reduce their activity or move to preferable microhabitats. The availability of favorable microhabitat conditions is strongly promoted by the spatial heterogeneity of habitats, which is often reduced by anthropogenic land transformation. Thus, it is decisive to understand the combined effects of these global change drivers on insect activity. Here, we assessed the movement activity of six insect species (from three orders) in response to heat stress using a unique tracking approach via radio frequency identification. We tracked 465 individuals at the iDiv Ecotron across a temperature gradient up to 38.7°C. In addition, we varied microhabitat conditions by adding leaf litter from four different tree species to the experimental units, either spatially separated or well mixed. Our results show opposing effects of heat extremes on insect activity depending on the microhabitat conditions. The insect community significantly decreased its activity in the mixed litter scenario, while we found a strong positive effect on activity in the separated litter scenario. We hypothesize that the simultaneous availability of thermal refugia as well as resources provided by the mixed litter scenario allows animals to reduce their activity and save energy in response to heat stress. Contrary, the spatial separation of beneficial microclimatic conditions and resources forces animals to increase their activity to fulfill their energetic needs. Thus, our study highlights the importance of habitat heterogeneity on smaller scales, because it may buffer the consequences of extreme temperatures of insect performance and survival under global change.


Assuntos
Temperatura Alta , Insetos , Animais , Temperatura , Ecossistema , Resposta ao Choque Térmico
11.
PLoS Biol ; 21(4): e3001820, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071598

RESUMO

Movement is critical to animal survival and, thus, biodiversity in fragmented landscapes. Increasing fragmentation in the Anthropocene necessitates predictions about the movement capacities of the multitude of species that inhabit natural ecosystems. This requires mechanistic, trait-based animal locomotion models, which are sufficiently general as well as biologically realistic. While larger animals should generally be able to travel greater distances, reported trends in their maximum speeds across a range of body sizes suggest limited movement capacities among the largest species. Here, we show that this also applies to travel speeds and that this arises because of their limited heat-dissipation capacities. We derive a model considering how fundamental biophysical constraints of animal body mass associated with energy utilisation (i.e., larger animals have a lower metabolic energy cost of locomotion) and heat-dissipation (i.e., larger animals require more time to dissipate metabolic heat) limit aerobic travel speeds. Using an extensive empirical dataset of animal travel speeds (532 species), we show that this allometric heat-dissipation model best captures the hump-shaped trends in travel speed with body mass for flying, running, and swimming animals. This implies that the inability to dissipate metabolic heat leads to the saturation and eventual decrease in travel speed with increasing body mass as larger animals must reduce their realised travel speeds in order to avoid hyperthermia during extended locomotion bouts. As a result, the highest travel speeds are achieved by animals of intermediate body mass, suggesting that the largest species are more limited in their movement capacities than previously anticipated. Consequently, we provide a mechanistic understanding of animal travel speed that can be generalised across species, even when the details of an individual species' biology are unknown, to facilitate more realistic predictions of biodiversity dynamics in fragmented landscapes.


Assuntos
Temperatura Alta , Corrida , Animais , Ecossistema , Locomoção , Tamanho Corporal
12.
Ecol Lett ; 26(1): 76-86, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36331162

RESUMO

Understanding the formation of feeding links provides insights into processes underlying food webs. Generally, predators feed on prey within a certain body-size range, but a systematic quantification of such feeding niches is lacking. We developed a size-constrained feeding-niche (SCFN) model and parameterized it with information on both realized and non-realized feeding links in 72 aquatic and 65 terrestrial food webs. Our analyses revealed profound differences in feeding niches between aquatic and terrestrial predators and variation along a temperature gradient. Specifically, the predator-prey body-size ratio and the range in prey sizes increase with the size of aquatic predators, whereas they are nearly constant across gradients in terrestrial predator size. Overall, our SCFN model well reproduces the feeding relationships and predation architecture across 137 natural food webs (including 3878 species and 136,839 realized links). Our results illuminate the organisation of natural food webs and enables novel trait-based and environment-explicit modelling approaches.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Tamanho Corporal , Modelos Teóricos
13.
Ecol Lett ; 26(2): 291-301, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36468276

RESUMO

Global ecosystems are facing a deepening biodiversity crisis, necessitating robust approaches to quantifying species extinction risk. The lower limit of the macroecological relationship between species range and body size has long been hypothesized as an estimate of the relationship between the minimum viable range size (MVRS) needed for species persistence and the organismal traits that affect space and resource requirements. Here, we perform the first explicit test of this assumption by confronting the MVRS predicted by the range-body size relationship with an independent estimate based on the scale of synchrony in abundance among spatially separated populations of riverine fish. We provide clear evidence of a positive relationship between the scale of synchrony and species body size, and strong support for the MVRS set by the lower limit of the range-body size macroecological relationship. This MVRS may help prioritize first evaluations for unassessed or data-deficient taxa in global conservation assessments.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Extinção Biológica , Peixes , Espécies em Perigo de Extinção
14.
Nat Commun ; 13(1): 4990, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008387

RESUMO

The ratio of predator-to-prey biomass is a key element of trophic structure that is typically investigated from a food chain perspective, ignoring channels of energy transfer (e.g. omnivory) that may govern community structure. Here, we address this shortcoming by characterising the biomass structure of 141 freshwater, marine and terrestrial food webs, spanning a broad gradient in community biomass. We test whether sub-linear scaling between predator and prey biomass (a potential signal of density-dependent processes) emerges within ecosystem types and across levels of biological organisation. We find a consistent, sub-linear scaling pattern whereby predator biomass scales with the total biomass of their prey with a near ¾-power exponent within food webs - i.e. more prey biomass supports proportionally less predator biomass. Across food webs, a similar sub-linear scaling pattern emerges between total predator biomass and the combined biomass of all prey within a food web. These general patterns in trophic structure are compatible with a systematic form of density dependence that holds among complex feeding interactions across levels of organization, irrespective of ecosystem type.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biomassa , Água Doce , Comportamento Predatório
15.
Ecol Lett ; 25(5): 1225-1236, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35286010

RESUMO

Despite intensive research on species dissimilarity patterns across communities (i.e. ß-diversity), we still know little about their implications for variation in food-web structures. Our analyses of 50 lake and 48 forest soil communities show that, while species dissimilarity depends on environmental and spatial gradients, these effects are only weakly propagated to the networks. Moreover, our results show that species and food-web dissimilarities are consistently correlated, but that much of the variation in food-web structure across spatial, environmental, and species gradients remains unexplained. Novel food-web assembly models demonstrate the importance of biotic filtering during community assembly by (1) the availability of resources and (2) limiting similarity in species' interactions to avoid strong niche overlap and thus competitive exclusion. This reveals a strong signature of biotic filtering processes during local community assembly, which constrains the variability in structural food-web patterns across local communities despite substantial turnover in species composition.


Assuntos
Biodiversidade , Florestas , Ecossistema , Cadeia Alimentar , Solo
16.
Curr Biol ; 32(9): 2093-2100.e3, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35334226

RESUMO

Taxonomic, functional, and phylogenetic diversities are important facets of biodiversity. Studying them together has improved our understanding of community dynamics, ecosystem functioning, and conservation values.1-3 In contrast to species, traits, and phylogenies, the diversity of biotic interactions has so far been largely ignored as a biodiversity facet in large-scale studies. This neglect represents a crucial shortfall because biotic interactions shape community dynamics, drive important aspects of ecosystem functioning,4-7 provide services to humans, and have intrinsic conservation value.8,9 Hence, the diversity of interactions can provide crucial and unique information with respect to other diversity facets. Here, we leveraged large datasets of trophic interactions, functional traits, phylogenies, and spatial distributions of >1,000 terrestrial vertebrate species across Europe at a 10-km resolution. We computed the diversity of interactions (interaction diversity [ID]) in addition to functional diversity (FD) and phylogenetic diversity (PD). After controlling for species richness, surplus and deficits of ID were neither correlated with FD nor with PD, thus representing unique and complementary information to the commonly studied facets of diversity. A three-dimensional mapping allowed for visualizing different combinations of ID-FD-PD simultaneously. Interestingly, the spatial distribution of these diversity combinations closely matched the boundaries between 10 European biogeographic regions and revealed new interaction-rich areas in the European Boreal region and interaction-poor areas in Central Europe. Our study demonstrates that the diversity of interactions adds new and ecologically relevant information to multifacetted, large-scale diversity studies with implications for understanding eco-evolutionary processes and informing conservation planning.


Assuntos
Biodiversidade , Ecossistema , Animais , Evolução Biológica , Humanos , Filogenia , Vertebrados
17.
Ecol Lett ; 25(2): 405-415, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34846785

RESUMO

Resource-use complementarity of producer species is often invoked to explain the generally positive diversity-productivity relationships. Additionally, multi-trophic interactions that link processes across trophic levels have received increasing attention as a possible key driver. Given that both are integral to natural ecosystems, their interactive effect should be evident but has remained hidden. We address this issue by analysing diversity-productivity relationships in a simulation experiment of producer communities nested within complex food-webs, manipulating resource-use complementarity and multi-trophic animal richness. We show that these two mechanisms interactively create diverse communities of complementary producer species. This shapes diversity-productivity relationships such that their joint contribution generally exceeds their individual effects. Specifically, multi-trophic interactions in animal-rich ecosystems facilitate producer coexistence by preventing competitive exclusion despite overlaps in resource-use, which increases the realised complementarity. The interdependence of food-webs and producer complementarity in creating biodiversity-productivity relationships highlights the importance to adopt a multi-trophic perspective on biodiversity-ecosystem functioning relationships.


Assuntos
Biodiversidade , Ecossistema , Animais , Simulação por Computador , Cadeia Alimentar
18.
PeerJ ; 9: e12194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760346

RESUMO

Bacterial communities are often exposed to temporal variations in resource availability, which exceed bacterial generation times and thereby affect bacterial coexistence. Bacterial population dynamics are also shaped by bacteriophages, which are a main cause of bacterial mortality. Several strategies are proposed in the literature to describe infections by phages, such as "Killing the Winner", "Piggyback the loser" (PtL) or "Piggyback the Winner" (PtW). The two temperate phage strategies PtL and PtW are defined by a change from lytic to lysogenic infection when the host density changes, from high to low or from low to high, respectively. To date, the occurrence of different phage strategies and their response to environmental variability is poorly understood. In our study, we developed a microbial trophic network model using ordinary differential equations (ODEs) and performed 'in silico' experiments. To model the switch from the lysogenic to the lytic cycle, we modified the lysis rate of infected bacteria and their growth was turned on or off using a density-dependent switching point. We addressed whether and how the different phage strategies facilitate bacteria coexistence competing for limiting resources. We also studied the impact of a fluctuating resource inflow to evaluate the response of the different phage strategies to environmental variability. Our results show that the viral shunt (i.e. nutrient release after bacterial lysis) leads to an enrichment of the system. This enrichment enables bacterial coexistence at lower resource concentrations. We were able to show that an established, purely lytic model leads to stable bacterial coexistence despite fluctuating resources. Both temperate phage models differ in their coexistence patterns. The model of PtW yields stable bacterial coexistence at a limited range of resource supply and is most sensitive to resource fluctuations. Interestingly, the purely lytic phage strategy and PtW both result in stable bacteria coexistence at oligotrophic conditions. The PtL model facilitates stable bacterial coexistence over a large range of stable and fluctuating resource inflow. An increase in bacterial growth rate results in a higher resilience to resource variability for the PtL and the lytic infection model. We propose that both temperate phage strategies represent different mechanisms of phages coping with environmental variability. Our study demonstrates how phage strategies can maintain bacterial coexistence in constant and fluctuating environments.

19.
Ecol Evol ; 11(19): 12948-12969, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646445

RESUMO

Global change alters ecological communities with consequences for ecosystem processes. Such processes and functions are a central aspect of ecological research and vital to understanding and mitigating the consequences of global change, but also those of other drivers of change in organism communities. In this context, the concept of energy flux through trophic networks integrates food-web theory and biodiversity-ecosystem functioning theory and connects biodiversity to multitrophic ecosystem functioning. As such, the energy-flux approach is a strikingly effective tool to answer central questions in ecology and global-change research. This might seem straight forward, given that the theoretical background and software to efficiently calculate energy flux are readily available. However, the implementation of such calculations is not always straight forward, especially for those who are new to the topic and not familiar with concepts central to this line of research, such as food-web theory or metabolic theory. To facilitate wider use of energy flux in ecological research, we thus provide a guide to adopting energy-flux calculations for people new to the method, struggling with its implementation, or simply looking for background reading, important resources, and standard solutions to the problems everyone faces when starting to quantify energy fluxes for their community data. First, we introduce energy flux and its use in community and ecosystem ecology. Then, we provide a comprehensive explanation of the single steps towards calculating energy flux for community data. Finally, we discuss remaining challenges and exciting research frontiers for future energy-flux research.

20.
Ecol Lett ; 24(12): 2576-2585, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34476879

RESUMO

Animals require a certain amount of habitat to persist and thrive, and habitat loss is one of the most critical drivers of global biodiversity decline. While habitat requirements have been predicted by relationships between species traits and home-range size, little is known about constraints imposed by environmental conditions and human impacts on a global scale. Our meta-analysis of 395 vertebrate species shows that global climate gradients in temperature and precipitation exert indirect effects via primary productivity, generally reducing space requirements. Human pressure, however, reduces realised space use due to ensuing limitations in available habitat, particularly for large carnivores. We show that human pressure drives extinction risk by increasing the mismatch between space requirements and availability. We use large-scale climate gradients to predict current species extinction risk across global regions, which also offers an important tool for predicting future extinction risk due to ongoing space loss and climate change.


Assuntos
Biodiversidade , Extinção Biológica , Animais , Mudança Climática , Ecossistema , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...