Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(15)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37566003

RESUMO

In contracting muscles, carbohydrates and fatty acids serve as energy substrates; the predominant utilization depends on the workload. Here, we investigated the contribution of non-mitochondrial and mitochondrial metabolic pathways in response to repeated training in a polygenic, paternally selected marathon mouse model (DUhTP), characterized by exceptional running performance and an unselected control (DUC), with both lines descended from the same genetic background. Both lines underwent three weeks of high-speed treadmill training or were sedentary. Both lines' muscles and plasma were analyzed. Muscle RNA was sequenced, and KEGG pathway analysis was performed. Analyses of muscle revealed no significant selection-related differences in muscle structure. However, in response to physical exercise, glucose and fatty acid oxidation were stimulated, lactate dehydrogenase activity was reduced, and lactate formation was inhibited in the marathon mice compared with trained control mice. The lack of lactate formation in response to exercise appears to be associated with increased lipid mobilization from peripheral adipose tissue in DUhTP mice, suggesting a specific benefit of lactate avoidance. Thus, results from the analysis of muscle metabolism in born marathon mice, shaped by 35 years (140 generations) of phenotype selection for superior running performance, suggest increased metabolic flexibility in male marathon mice toward lipid catabolism regulated by lactate dehydrogenase.


Assuntos
L-Lactato Desidrogenase , Músculos , Condicionamento Físico Animal , Animais , Masculino , Camundongos , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Redes e Vias Metabólicas , Músculos/metabolismo
2.
Cells ; 10(12)2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34943926

RESUMO

The somatotropic axis is required for a number of biological processes, including growth, metabolism, and aging. Due to its central effects on growth and metabolism and with respect to its positive effects on muscle mass, regulation of the GH/IGF-system during endurance exercise is of particular interest. In order to study the control of gene expression and adaptation related to physical performance, we used a non-inbred mouse model, phenotype-selected for high running performance (DUhTP). Gene expression of the GH/IGF-system and related signaling cascades were studied in the pituitary gland and muscle of sedentary males of marathon and unselected control mice. In addition, the effects of three weeks of endurance exercise were assessed in both genetic groups. In pituitary glands from DUhTP mice, reduced expression of Pou1f1 (p = 0.002) was accompanied by non-significant reductions of Gh mRNA (p = 0.066). In addition, mRNA expression of Ghsr and Sstr2 were significantly reduced in the pituitary glands from DUhTP mice (p ≤ 0.05). Central downregulation of Pou1f1 expression was accompanied by reduced serum concentrations of IGF1 and coordinated downregulation of multiple GH/IGF-signaling compounds in muscle (e.g., Ghr, Igf1, Igf1r, Igf2r, Irs1, Irs2, Akt3, Gskb, Pik3ca/b/a2, Pten, Rictor, Rptor, Tsc1, Mtor; p ≤ 0.05). In response to exercise, the expression of Igfbp3, Igfbp 4, and Igfbp 6 and Stc2 mRNA was increased in the muscle of DUhTP mice (p ≤ 0.05). Training-induced specific activation of AKT, S6K, and p38 MAPK was found in muscles from control mice but not in DUhTP mice (p ≤ 0.05), indicating a lack of mTORC1 and mTORC2 activation in marathon mice in response to physical exercise. While hormone-dependent mTORC1 and mTORC2 pathways in marathon mice were repressed, robust increases of Ragulator complex compounds (p ≤ 0.001) and elevated sirtuin 2 to 6 mRNA expression were observed in the DUhTP marathon mouse model (p ≤ 0.05). Activation of AMPK was not observed under the experimental conditions of the present study. Our results describe coordinated downregulation of the somatotropic pathway in long-term selected marathon mice (DUhTP), possibly via the pituitary gland and muscle interaction. Our results, for the first time, demonstrate that GH/IGF effects are repressed in a context of superior running performance in mice.


Assuntos
Hormônio do Crescimento , Fator de Crescimento Insulin-Like I , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Músculos , Condicionamento Físico Animal , Transdução de Sinais , Animais , Masculino , Camundongos , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Músculos/metabolismo , Fenótipo , Fosforilação , Resistência Física , Hipófise/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...