Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurovirol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884890

RESUMO

HIV-associated neurological disorder (HAND) is a serious complication of HIV infection marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of HIV and cocaine-induced transcriptomes in primary cortical cultures revealed significant overexpression of the macrophage-specific gene aconitate decarboxylase 1 (Acod1). The ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. Itaconate then facilitates cytokine production and activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. However, the immunometabolic function of itaconate was unexplored in HIV and cocaine-exposed microglia. We assessed the potential of 4-octyl-itaconate (4OI), a cell-penetrable ester form of itaconate known for its anti-inflammatory properties. When primary cortical cultures exposed to Tat and cocaine were treated with 4OI, microglial cell number increased and the morphological altercations induced by Tat and cocaine were reversed. Microglial cells also appeared more ramified, resembling the quiescent microglia. 4OI treatment inhibited secretion of the proinflammatory cytokines IL-1α, IL-1ß, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling determined that Nrf2 target genes were significantly activated in Tat and 4OI treated cultures relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development to treat HAND coupled with CUD comorbidities.

2.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746389

RESUMO

Tumor-associated macrophages exhibit high heterogeneity and contribute to the establishment of an immunosuppressive tumor microenvironment (TME). Although numerous studies have demonstrated that extracellular factors promote macrophage proliferation and polarization, the regulatory mechanisms governing the differentiation process to generate phenotypically, and functionally diverse macrophage subpopulations remain largely unexplored. In this study, we examined the influence of interleukin 1α (IL-1α) on the development of an immunosuppressive TME using orthotopic transplantation murine models of breast cancer. Deletion of host Il1α led to the rejection of inoculated congenic tumors. Single-cell sequencing analysis revealed that CX3CR1+ macrophage cells were the primary sources of IL-1α in the TME. The absence of IL-1α reprogrammed the monocyte-to-macrophage differentiation process within the TME, characterized by a notable decrease in the subset of CX3CR+ ductal-like macrophages and an increase in iNOS-expressing inflammatory cells. Comparative analysis of gene signatures in both human and mouse macrophage subsets suggested that IL-1α deficiency shifted the macrophage polarization from M2 to M1 phenotypes, leading to enhanced cytotoxic T lymphocyte activity in the TME. Importantly, elevated levels of IL-1α in human cancers were associated with worse prognosis following immunotherapy. These findings underscore the pivotal role of IL-1α in shaping an immune-suppressive TME through the regulation of macrophage differentiation and activity, highlighting IL-1α as a potential target for breast cancer treatment.

3.
J Clin Invest ; 134(10)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546787

RESUMO

Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.


Assuntos
Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Neoplasias de Próstata Resistentes à Castração , Inibidores de Proteínas Quinases , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Humanos , Animais , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/enzimologia , Camundongos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
4.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106208

RESUMO

Anoikis resistance or evasion of cell death triggered by cell detachment into suspension is a hallmark of cancer that is concurrent with cell survival and metastasis. The effects of frequent matrix detachment encounters on the development of anoikis resistance in cancer remains poorly defined. Here we show using a panel of ovarian cancer models, that repeated exposure to suspension stress in vitro followed by attached recovery growth leads to the development of anoikis resistance paralleling in vivo development of anoikis resistance in ovarian cancer ascites. This resistance is concurrent with enhanced invasion, chemoresistance and the ability of anoikis adapted cells to metastasize to distant sites. Adapted anoikis resistant cells show a heightened dependency on oxidative phosphorylation and can also evade immune surveillance. We find that such acquired anoikis resistance is not genetic, as acquired resistance persists for a finite duration in the absence of suspension stress. Transcriptional reprogramming is however essential to this process, as acquisition of adaptive anoikis resistance in vitro and in vivo is exquisitely sensitive to inhibition of CDK8/19 Mediator kinase, a pleiotropic regulator of transcriptional reprogramming. Our data demonstrate that growth after recovery from repeated exposure to suspension stress is a direct contributor to metastasis and that inhibition of CDK8/19 Mediator kinase during such adaptation provides a therapeutic opportunity to prevent both local and distant metastasis in cancer.

5.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808776

RESUMO

HIV-associated neurological disorder (HAND) is a serious complication of HIV infection, marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for effective therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of the HIV and cocaine-induced transcriptomes in primary cortical cultures revealed a significant overexpression of the macrophage-specific gene, aconitate decarboxylase 1 (Acod1), caused by the combined insults of HIV and cocaine. ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. The itaconate produced facilitates cytokine production and subsequently activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. While the role of itaconate' in limiting inflammation has been studied in peripheral macrophages, its immunometabolic function remains unexplored in HIV and cocaine-exposed microglia. We assessed in this model system the potential of 4-octyl-itaconate (4OI), a cell-penetrable esterified form of itaconate known for its potent anti-inflammatory properties and potential therapeutic applications. We administered 4OI to primary cortical cultures exposed to Tat and cocaine. 4OI treatment increased the number of microglial cells in both untreated and Tat±Cocaine-treated cultures and also reversed the morphological altercations induced by Tat and cocaine. In the presence of 4OI, microglial cells also appeared more ramified, resembling the quiescent microglia. Consistent with these results, 4OI treatment inhibited the secretion of the proinflammatory cytokines IL-1α, IL-1ß, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling further determined that Nrf2 target genes such as NAD(P)H quinone oxidoreductase 1 (Nqo1), Glutathione S-transferase Pi (Gstp1), and glutamate cysteine ligase catalytic (Gclc), were most significantly activated in Tat-4OI treated cultures, relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development aimed at addressing HAND coupled with CUD comorbidities.

6.
Nucleic Acids Res ; 51(14): 7288-7313, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37378433

RESUMO

We have conducted a detailed transcriptomic, proteomic and phosphoproteomic analysis of CDK8 and its paralog CDK19, alternative enzymatic components of the kinase module associated with transcriptional Mediator complex and implicated in development and diseases. This analysis was performed using genetic modifications of CDK8 and CDK19, selective CDK8/19 small molecule kinase inhibitors and a potent CDK8/19 PROTAC degrader. CDK8/19 inhibition in cells exposed to serum or to agonists of NFκB or protein kinase C (PKC) reduced the induction of signal-responsive genes, indicating a pleiotropic role of Mediator kinases in signal-induced transcriptional reprogramming. CDK8/19 inhibition under basal conditions initially downregulated a small group of genes, most of which were inducible by serum or PKC stimulation. Prolonged CDK8/19 inhibition or mutagenesis upregulated a larger gene set, along with a post-transcriptional increase in the proteins comprising the core Mediator complex and its kinase module. Regulation of both RNA and protein expression required CDK8/19 kinase activities but both enzymes protected their binding partner cyclin C from proteolytic degradation in a kinase-independent manner. Analysis of isogenic cell populations expressing CDK8, CDK19 or their kinase-inactive mutants revealed that CDK8 and CDK19 have the same qualitative effects on protein phosphorylation and gene expression at the RNA and protein levels, whereas differential effects of CDK8 versus CDK19 knockouts were attributable to quantitative differences in their expression and activity rather than different functions.


Assuntos
Quinases Ciclina-Dependentes , Complexo Mediador , Humanos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Fosforilação , Proteômica , RNA/metabolismo
7.
Viruses ; 15(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376593

RESUMO

Hyperactivation of the immune system remains a dramatic, life-threatening complication of viral and bacterial infections, particularly during pneumonia. Therapeutic approaches to counteract local and systemic outbreaks of cytokine storm and to prevent tissue damage remain limited. Cyclin-dependent kinases 8 and 19 (CDK8/19) potentiate transcriptional responses to the altered microenvironment, but CDK8/19 potential in immunoregulation is not fully understood. In the present study, we investigated how a selective CDK8/19 inhibitor, Senexin B, impacts the immunogenic profiles of monocytic cells stimulated using influenza virus H1N1 or bacterial lipopolysaccharides. Senexin B was able to prevent the induction of gene expression of proinflammatory cytokines in THP1 and U937 cell lines and in human peripheral blood-derived mononuclear cells. Moreover, Senexin B substantially reduced functional manifestations of inflammation, including clustering and chemokine-dependent migration of THP1 monocytes and human pulmonary fibroblasts (HPF).


Assuntos
Vírus da Influenza A Subtipo H1N1 , Monócitos , Humanos , Células U937 , Vírus da Influenza A Subtipo H1N1/metabolismo , Citocinas/metabolismo , Leucócitos Mononucleares/metabolismo
8.
FEBS Open Bio ; 13(3): 556-569, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36723232

RESUMO

Evaluation of gene co-regulation is a powerful approach for revealing regulatory associations between genes and predicting biological function, especially in genetically diverse samples. Here, we applied this strategy to identify transcripts that are co-regulated with unfolded protein response (UPR) genes in cultured fibroblasts from outbred deer mice. Our analyses showed that the transcriptome associated with RASSF1, a tumor suppressor involved in cell cycle regulation and not previously linked to UPR, is highly correlated with the transcriptome of several UPR-related genes, such as BiP/GRP78, DNAJB9, GRP94, ATF4, DNAJC3, and CHOP/DDIT3. Conversely, gene ontology analyses for genes co-regulated with RASSF1 predicted a previously unreported involvement in UPR-associated apoptosis. Bioinformatic analyses indicated the presence of ATF4-binding sites in the RASSF1 promoter, which were shown to be operational using chromatin immunoprecipitation. Reporter assays revealed that the RASSF1 promoter is responsive to ATF4, while ablation of RASSF1 mitigated the expression of the ATF4 effector BBC3 and abrogated tunicamycin-induced apoptosis. Collectively, these results implicate RASSF1 in the regulation of endoplasmic reticulum stress-associated apoptosis downstream of ATF4. They also illustrate the power of gene coordination analysis in predicting biological functions and revealing regulatory associations between genes.


Assuntos
Fator 4 Ativador da Transcrição , Estresse do Retículo Endoplasmático , Proteínas Supressoras de Tumor , Resposta a Proteínas não Dobradas , Proteínas de Ciclo Celular/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Transcriptoma/genética , Resposta a Proteínas não Dobradas/genética , Fator 4 Ativador da Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(32): e2201073119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914167

RESUMO

Breast cancers (BrCas) that overexpress oncogenic tyrosine kinase receptor HER2 are treated with HER2-targeting antibodies (such as trastuzumab) or small-molecule kinase inhibitors (such as lapatinib). However, most patients with metastatic HER2+ BrCa have intrinsic resistance and nearly all eventually become resistant to HER2-targeting therapy. Resistance to HER2-targeting drugs frequently involves transcriptional reprogramming associated with constitutive activation of different signaling pathways. We have investigated the role of CDK8/19 Mediator kinase, a regulator of transcriptional reprogramming, in the response of HER2+ BrCa to HER2-targeting drugs. CDK8 was in the top 1% of all genes ranked by correlation with shorter relapse-free survival among treated HER2+ BrCa patients. Selective CDK8/19 inhibitors (senexin B and SNX631) showed synergistic interactions with lapatinib and trastuzumab in a panel of HER2+ BrCa cell lines, overcoming and preventing resistance to HER2-targeting drugs. The synergistic effects were mediated in part through the PI3K/AKT/mTOR pathway and reduced by PI3K inhibition. Combination of HER2- and CDK8/19-targeting agents inhibited STAT1 and STAT3 phosphorylation at S727 and up-regulated tumor suppressor BTG2. The growth of xenograft tumors formed by lapatinib-sensitive or -resistant HER2+ breast cancer cells was partially inhibited by SNX631 alone and strongly suppressed by the combination of SNX631 and lapatinib, overcoming lapatinib resistance. These effects were associated with decreased tumor cell proliferation and altered recruitment of stromal components to the xenograft tumors. These results suggest potential clinical benefit of combining HER2- and CDK8/19-targeting drugs in the treatment of metastatic HER2+ BrCa.


Assuntos
Neoplasias da Mama , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Lapatinib/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cells ; 10(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445730

RESUMO

Drug resistance is the main obstacle to achieving cures with both conventional and targeted anticancer drugs. The emergence of acquired drug resistance is initially mediated by non-genetic transcriptional changes, which occur at a much higher frequency than mutations and may involve population-scale transcriptomic adaptation. CDK8/19 kinases, through association with transcriptional Mediator complex, regulate transcriptional reprogramming by co-operating with different signal-responsive transcription factors. Here we tested if CDK8/19 inhibition could prevent adaptation to drugs acting on epidermal growth factor receptor (EGFR/ERBB1/HER1). The development of resistance was analyzed following long-term exposure of BT474 and SKBR3 breast cancer cells to EGFR-targeting small molecules (gefitinib, erlotinib) and of SW48 colon cancer cells to an anti-EGFR monoclonal antibody cetuximab. In all cases, treatment of small cell populations (~105 cells) with a single dose of the drug initially led to growth inhibition that was followed by the resumption of proliferation and development of drug resistance in the adapted populations. However, this adaptation was always prevented by the addition of selective CDK8/19 inhibitors, even though such inhibitors alone had only moderate or no effect on cell growth. These results indicate that combining EGFR-targeting drugs with CDK8/19 inhibitors may delay or prevent the development of tumor resistance to therapy.


Assuntos
Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacologia , Humanos , Concentração Inibidora 50
11.
Biochem Pharmacol ; 182: 114280, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049245

RESUMO

Stress granules (SGs) are non-membranous cytosolic protein-RNA aggregates that process mRNAs through stalled translation initiation in response to cellular stressors and in disease. DEAD-Box RNA helicase 3 (DDX3) is an active target of drug development for the treatment of viral infections, cancers, and neurodegenerative diseases. DDX3 plays a critical role in RNA metabolism, including SGs, but the role of DDX3 enzymatic activity in SG dynamics is not well understood. Here, we address this question by determining the effects of DDX3 inhibition on the dynamics of SG assembly and disassembly. We use two small molecule inhibitors of DDX3, RK33 and 16D, with distinct inhibitory mechanisms that target DDX3's ATPase activity and RNA helicase site, respectively. We find that both DDX3 inhibitors reduce the assembly of SGs, with a more pronounced reduction from RK-33. In contrast, both compounds only marginally affect the disassembly of SGs. RNA-mediated knockdown of DDX3 caused a similar reduction in SG assembly and minimal effect on SG disassembly. Collectively, these results reveal that the enzymatic activity of DDX3 is required for the assembly of SGs and pharmacological inhibition of DDX3 could be relevant for the treatment of SG-dependent pathologies.


Assuntos
Azepinas/farmacologia , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/metabolismo , Imidazóis/farmacologia , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo
12.
Cells ; 9(3)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155786

RESUMO

CDK7, a transcriptional cyclin-dependent kinase, is emerging as a novel cancer target. Triple-negative breast cancers (TNBC) but not estrogen receptor-positive (ER+) breast cancers have been reported to be uniquely sensitive to the CDK7 inhibitor THZ1 due to the inhibition of a cluster of TNBC-specific genes. However, bioinformatic analysis indicates that CDK7 RNA expression is associated with negative prognosis in all the major subtypes of breast cancer. To further elucidate the effects of CDK7 inhibition in breast cancer, we profiled a panel of cell lines representing different breast cancer subtypes. THZ1 inhibited cell growth in all subtypes (TNBC, HER2+, ER+, and HER2+/ER+) with no apparent subtype selectivity. THZ1 inhibited CDK7 activity and induced G1 arrest and apoptosis in all the tested cell lines, but THZ1 sensitivity did not correlate with CDK7 inhibition or CDK7 expression levels. THZ1 sensitivity across the cell line panel did not correlate with TNBC-specific gene expression but it was found to correlate with the differential inhibition of three genes: CDKN1B, MYC and transcriptional coregulator CITED2. Response to THZ1 also correlated with basal CITED2 protein expression, a potential marker of CDK7 inhibitor sensitivity. Furthermore, all of the THZ1-inhibited genes examined were inducible by EGF but THZ1 prevented this induction. THZ1 had synergistic or additive effects when combined with the EGFR inhibitor erlotinib, with no outward selectivity for a particular subtype of breast cancer. These results suggest a potential broad utility for CDK7 inhibitors in breast cancer therapy and the potential for combining CDK7 and EGFR inhibitors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/biossíntese , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/administração & dosagem , Cloridrato de Erlotinib/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Fenilenodiaminas/administração & dosagem , Fenilenodiaminas/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Análise de Sobrevida , Transativadores/biossíntese , Transativadores/genética , Quinase Ativadora de Quinase Dependente de Ciclina
13.
J Neuroimmune Pharmacol ; 15(2): 209-223, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31802418

RESUMO

HIV-1 Associated Neurocognitive Disorder (HAND) is a common and clinically detrimental complication of HIV infection. Viral proteins, including Tat, released from infected cells, cause neuronal toxicity. Substance abuse in HIV-infected patients greatly influences the severity of neuronal damage. To repurpose small molecule inhibitors for anti-HAND therapy, we employed MOLIERE, an AI-based literature mining system that we developed. All human genes were analyzed and prioritized by MOLIERE to find previously unknown targets connected to HAND. From the identified high priority genes, we narrowed the list to those with known small molecule ligands developed for other applications and lacking systemic toxicity in animal models. To validate the AI-based process, the selective small molecule inhibitor of DDX3 helicase activity, RK-33, was chosen and tested for neuroprotective activity. The compound, previously developed for cancer treatment, was tested for the prevention of combined neurotoxicity of HIV Tat and cocaine. Rodent cortical cultures were treated with 6 or 60 ng/ml of HIV Tat and 10 or 25 µM of cocaine, which caused substantial toxicity. RK-33 at doses as low as 1 µM greatly reduced the neurotoxicity of Tat and cocaine. Transcriptome analysis showed that most Tat-activated transcripts are microglia-specific genes and that RK-33 blocks their activation. Treatment with RK-33 inhibits the Tat and cocaine-dependent increase in the number and size of microglia and the proinflammatory cytokines IL-6, TNF-α, MCP-1/CCL2, MIP-2, IL-1α and IL-1ß. These findings reveal that inhibition of DDX3 may have the potential to treat not only HAND but other neurodegenerative diseases. Graphical Abstract RK-33, selective inhibitor of Dead Box RNA helicase 3 (DDX3) protects neurons from combined Tat and cocaine neurotoxicity by inhibition of microglia activation and production of proinflammatory cytokines.


Assuntos
Azepinas/farmacologia , Cocaína/toxicidade , RNA Helicases DEAD-box/antagonistas & inibidores , Imidazóis/farmacologia , Microglia/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Complexo AIDS Demência/tratamento farmacológico , Complexo AIDS Demência/enzimologia , Animais , Azepinas/uso terapêutico , Células Cultivadas , RNA Helicases DEAD-box/metabolismo , Inibidores da Captação de Dopamina/toxicidade , Relação Dose-Resposta a Droga , Feminino , Imidazóis/uso terapêutico , Masculino , Microglia/enzimologia , Ratos , Ratos Sprague-Dawley
14.
Cells ; 8(11)2019 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717492

RESUMO

CDK8/19 kinases, which mediate transcriptional reprogramming, have become an active target for cancer drug discovery. Several small-molecule CDK8/19 inhibitors showed in vivo efficacy and two have entered clinical trials, with no significant toxicities reported. However, Clarke et al. (eLife 2016; 5; e20722) found severe systemic toxicity associated with two potent CDK8/19 inhibitors, Cmpd3 (CCT251921) and Cmpd4 (MSC2530818), and suggested that their toxicity was due to on-target effects. Here, we compared five CDK8/19 inhibitors: Cmpd3, Cmpd4, Senexin B, 16-didehydro-cortistatin A (dCA) and 15w, in different assays. Only Cmpd4 showed striking toxicity in developing zebrafish. In cell-based assays for CDK8 and CDK19 inhibition, Cmpd3, Cmpd4, dCA and 15w showed similar low-nanomolar potency and efficacy against CDK8 and CDK19, while Senexin B was less potent. Only dCA produced sustained inhibition of CDK8/19-dependent gene expression. While toxicity of different compounds did not correlate with their effects on CDK8 and CDK19, kinome profiling identified several off-target kinases for both Cmpd3 and Cmpd4, which could be responsible for their toxicity. Off-target activities could have been achieved in the study of Clarke et al. due to high in vivo doses of Cmpd3 and Cmpd4, chosen for the ability to inhibit STAT1 S727 phosphorylation in tumor xenografts. We show here that STAT1 S727 phosphorylation is induced by various cytokines and stress stimuli in CDK8/19-independent manner, indicating that it is not a reliable pharmacodynamic marker of CDK8/19 activity. These results illustrate the need for careful off-target analysis and dose selection in the development of CDK8/19 inhibitors.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Animais , Sobrevivência Celular/efeitos dos fármacos , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Fosforilação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Peixe-Zebra
15.
Cells ; 8(10)2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590445

RESUMO

Cell-based assays for CDK8/19 inhibition are not easily defined, since there are no known cellular functions unique to these kinases. To solve this problem, we generated derivatives of 293 cells with CRISPR knockout of one or both of CDK8 and CDK19. Double knockout (dKO) of CDK8 and CDK19 together (but not individually) decreased the induction of transcription by NFκB (a CDK8/19-potentiated transcription factor) and abrogated the effect of CDK8/19 inhibitors on such induction. We generated wild type (WT) and dKO cell lines expressing luciferase from an NFκB-dependent promoter. Inhibitors selective for CDK8/19 over other CDKs decreased TNFα-induced luciferase expression in WT cells by ~80% with no effect on luciferase induction in dKO cells. In contrast, non-selective CDK inhibitors flavopiridol and dinaciclib and a CDK7/12/13 inhibitor THZ1 (but not CDK4/6 inhibitor palbociclib) suppressed luciferase induction in both WT and dKO cells, indicating a distinct role for other CDKs in the NFκB pathway. We used this assay to characterize a series of thienopyridines with in vitro bone anabolic activity, one of which was identified as a selective CDK8/19 inhibitor. Thienopyridines inhibited luciferase induction in the WT but not dKO cells and their IC50 values in the WT reporter assay showed near-perfect correlation (R2 = 0.98) with their reported activities in a bone anabolic activity assay, confirming that the latter function is mediated by CDK8/19 and validating our assay as a robust and quantitative method for CDK8/19 inhibition.


Assuntos
Anabolizantes/farmacologia , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , NF-kappa B/metabolismo , Tienopiridinas/farmacologia , Animais , Bioensaio , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos
16.
Cells ; 8(8)2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382571

RESUMO

CDK8 and CDK19 Mediator kinases are transcriptional co-regulators implicated in several types of cancer. Small-molecule CDK8/19 inhibitors have recently entered or are entering clinical trials, starting with breast cancer and acute myeloid leukemia (AML). To identify other cancers where these novel drugs may provide benefit, we queried genomic and transcriptomic databases for potential impact of CDK8, CDK19, or their binding partner CCNC. sgRNA analysis of a panel of tumor cell lines showed that most tumor types represented in the panel, except for some central nervous system tumors, were not dependent on these genes. In contrast, analysis of clinical samples for alterations in these genes revealed a high frequency of gene amplification in two highly aggressive subtypes of prostate cancer and in some cancers of the GI tract, breast, bladder, and sarcomas. Analysis of survival correlations identified a group of cancers where CDK8 expression correlated with shorter survival (notably breast, prostate, cervical cancers, and esophageal adenocarcinoma). In some cancers (AML, melanoma, ovarian, and others), such correlations were limited to samples with a below-median tumor mutation burden. These results suggest that Mediator kinases are especially important in cancers that are driven primarily by transcriptional rather than mutational changes and warrant an investigation of their role in additional cancer types.


Assuntos
Ciclina C/fisiologia , Quinase 8 Dependente de Ciclina/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Ciclina C/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
18.
Science ; 363(6428): 753-756, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30765569

RESUMO

ABCB1, also known as P-glycoprotein, actively extrudes xenobiotic compounds across the plasma membrane of diverse cells, which contributes to cellular drug resistance and interferes with therapeutic drug delivery. We determined the 3.5-angstrom cryo-electron microscopy structure of substrate-bound human ABCB1 reconstituted in lipidic nanodiscs, revealing a single molecule of the chemotherapeutic compound paclitaxel (Taxol) bound in a central, occluded pocket. A second structure of inhibited, human-mouse chimeric ABCB1 revealed two molecules of zosuquidar occupying the same drug-binding pocket. Minor structural differences between substrate- and inhibitor-bound ABCB1 sites are amplified toward the nucleotide-binding domains (NBDs), revealing how the plasticity of the drug-binding site controls the dynamics of the adenosine triphosphate-hydrolyzing NBDs. Ordered cholesterol and phospholipid molecules suggest how the membrane modulates the conformational changes associated with drug binding and transport.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Sítios de Ligação , Colesterol/química , Microscopia Crioeletrônica , Dibenzocicloeptenos/química , Dibenzocicloeptenos/farmacologia , Desenho de Fármacos , Humanos , Hidrólise , Camundongos , Proteínas Mutantes Quiméricas/antagonistas & inibidores , Paclitaxel/química , Paclitaxel/farmacologia , Fosfolipídeos/química , Ligação Proteica , Domínios Proteicos/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia , Especificidade por Substrato
19.
Cancer Res ; 78(23): 6594-6606, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30185549

RESUMO

: Unresectable hepatic metastases of colon cancer respond poorly to existing therapies and are a major cause of colon cancer lethality. In this study, we evaluated the therapeutic viability of targeting the mediator kinase CDK8, an early clinical stage drug target, as a means to suppress metastasis of colon cancer. CDK8 was amplified or overexpressed in many colon cancers and CDK8 expression correlated with shorter patient survival. Knockdown or inhibition of CDK8 had little effect on colon cancer cell growth but suppressed metastatic growth of mouse and human colon cancer cells in the liver. This effect was due in part to inhibition of already established hepatic metastases, indicating therapeutic potential of CDK8 inhibitors in the metastatic setting. In contrast, knockdown or inhibition of CDK8 had no significant effect on the growth of tumors implanted subcutaneously, intrasplenically, or orthotopically in the cecum. CDK8 mediated colon cancer growth in the liver through downregulation of matrix metalloproteinase (MMP) inhibitor TIMP3 via TGFß/SMAD-driven expression of a TIMP3-targeting microRNA, miR-181b, along with induction of Mmp3 in murine or MMP9 in human colon cancer cells via Wnt/ß-catenin-driven transcription. These findings reveal a new mechanism for negative regulation of gene expression by CDK8 and a site-specific role for CDK8 in colon cancer hepatic metastasis. Our results indicate the utility of CDK8 inhibitors for the treatment of colon cancer metastases in the liver and suggest that CDK8 inhibitors may be considered in other therapeutic settings involving TGFß/SMAD or Wnt/ß-catenin pathway activation. SIGNIFICANCE: These findings demonstrate that inhibition of the transcription-regulating kinase CDK8 exerts a site-specific tumor-suppressive effect on colon cancer growth in the liver, representing a unique therapeutic opportunity for the treatment of advanced colon cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/23/6594/F1.large.jpg.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Quinase 8 Dependente de Ciclina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Metaloproteinases da Matriz/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Metaloproteinases da Matriz/metabolismo , Camundongos , MicroRNAs/genética , Interferência de RNA , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Resultado do Tratamento , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Oncogene ; 37(35): 4792-4808, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29780169

RESUMO

CDK8 is a transcription-regulating kinase that controls TGF-ß/BMP-responsive SMAD transcriptional activation and turnover through YAP1 recruitment. However, how the CDK8/YAP1 pathway influences SMAD1 response in cancer remains unclear. Here we report that SMAD1-driven epithelial-to-mesenchymal transition (EMT) is critically dependent on matrix rigidity and YAP1 in a wide spectrum of cancer models. We find that both genetic and pharmacological inhibition of CDK8 and its homologous twin kinase CDK19 leads to abrogation of BMP-induced EMT. Notably, selectively blocking CDK8/19 specifically abrogates tumor cell invasion, changes in EMT-associated transcription factors, E-cadherin expression and YAP nuclear localization both in vitro and in vivo in a murine syngeneic EMT model. Furthermore, RNA-seq meta-analysis reveals a direct correlation between CDK8 and EMT-associated transcription factors in patients. Our findings demonstrate that CDK8, an emerging therapeutic target, coordinates growth factor and mechanical cues during EMT and invasion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Morfogenética Óssea 4/genética , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Transição Epitelial-Mesenquimal/genética , Fosfoproteínas/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Fatores de Transcrição/genética , Ativação Transcricional/genética , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA