Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(4): 1721-1730, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36653019

RESUMO

There was no regulatory requirement for ecotoxicological testing of human pharmaceuticals authorized before 2006, and many of these have little or no data available to assess their environmental risk. Motivated by animal welfare considerations, we developed a decision tree to minimize in vivo fish testing for such legacy active pharmaceutical ingredients (APIs). The minimum no observed effect concentration (NOECmin, the lowest NOEC from chronic Daphnia and algal toxicity studies), the theoretical therapeutic water concentration (TWC, calculated using the fish plasma model), and the predicted environmental concentration (PEC) were used to derive API risk quotients (PEC/NOECmin and PEC/TWC). Based on a verification data set of 96 APIs, we show that by setting a threshold value of 0.001 for both risk quotients, the need for in vivo fish testing could potentially be reduced by around 35% without lowering the level of environmental protection. Hence, for most APIs, applying an assessment factor of 1000 (equivalent to the threshold of 0.001) to NOECmin substituted reliably for NOECfish, and TWC acted as an effective safety net for the others. In silico and in vitro data and mammalian toxicity data may further support the final decision on the need for fish testing.


Assuntos
Peixes , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Daphnia , Ecotoxicologia , Monitoramento Ambiental , Medição de Risco , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
Harmful Algae ; 121: 102363, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639184

RESUMO

Harmful algal blooms (HABs) intoxicate and asphyxiate marine life, causing devastating environmental and socio-economic impacts, costing at least $8bn/yr globally. Accumulation of phycotoxins from HAB phytoplankton in filter-feeding shellfish can poison human consumers, prompting harvesting closures at shellfish production sites. To quantify long-term intoxication risk from Dinophysis HAB species, we used historical HAB monitoring data (2009-2020) to develop a new modelling approach to predict Dinophysis toxin concentrations in a range of bivalve shellfish species at shellfish sites in Western Scotland, South-West England and Northern France. A spatiotemporal statistical modelling framework was developed within the Generalized Additive Model (GAM) framework to quantify long-term HAB risks for different bivalve shellfish species across each region, capturing seasonal variations, and spatiotemporal interactions. In all regions spatial functions were most important for predicting seasonal HAB risk, offering the potential to inform optimal siting of new shellfish operations and safe harvesting periods for businesses. A 10-fold cross-validation experiment was carried out for each region, to test the models' ability to predict toxin risk at harvesting locations for which data were withheld from the model. Performance was assessed by comparing ranked predicted and observed mean toxin levels at each site within each region: the correlation of ranks was 0.78 for Northern France, 0.64 for Western Scotland, and 0.34 for South-West England, indicating our approach has promise for predicting unknown HAB risk, depending on the region and suitability of training data.


Assuntos
Bivalves , Dinoflagellida , Animais , Humanos , Proliferação Nociva de Algas , Frutos do Mar/análise , Alimentos Marinhos
3.
Life (Basel) ; 13(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36676158

RESUMO

Seaweed farming in Europe is growing and may provide environmental benefits, including habitat provisioning, coastal protection, and bioremediation. Habitat provisioning by seaweed farms remains largely unquantified, with previous research focused primarily on the detrimental effects of epibionts, rather than their roles in ecological functioning and ecosystem service provision. We monitored the development and diversity of epibiont assemblages on cultivated sugar kelp (Saccharina latissima) at a farm in Cornwall, southwest UK, and compared the effects of different harvesting techniques on epibiont assemblage structure. Increases in epibiont abundance (PERMANOVA, F4,25 = 100.56, p < 0.001) and diversity (PERMANOVA, F4,25 = 27.25, p < 0.001) were found on cultivated kelps over and beyond the growing season, reaching an average abundance of >6000 individuals per kelp plant with a taxonomic richness of ~9 phyla per kelp by late summer (August). Assemblages were dominated by crustaceans (mainly amphipods), molluscs (principally bivalves) and bryozoans, which provide important ecological roles, despite reducing crop quality. Partial harvesting techniques maintained, or increased, epibiont abundance and diversity beyond the farming season; however, these kelp plants were significantly fouled and would not be commercially viable in most markets. This paper improves understanding of epibiont assemblage development at European kelp farms, which can inform sustainable, ecosystem-based approaches to aquaculture.

4.
Environ Sci Technol Lett ; 9(9): 699-705, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36118957

RESUMO

Medicines are essential to human health but can also impact the aquatic and terrestrial environment after use by patients and release via excreta into wastewater. We highlight the need for a GREENER approach to identify and meet important environmental criteria, which will help reduce the impact of medicinal residues on the environment. These criteria include effect reduction by avoiding nontarget effects or undesirable moieties, exposure reduction via lower emissions or environmental (bio)degradability, no PBT (persistent, bioaccumulative, and toxic) substances, and risk mitigation. With all of these criteria, however, patient health is of primary importance as medicines are required to be safe and efficacious for treating diseases. We discuss the feasibility of including these criteria for green by design active pharmaceutical ingredients in the process of drug discovery and development and which tools or assays are needed to accomplish this. The integrated GREENER approach can be used to accelerate discussions about future innovations in drug discovery and development.

5.
Sci Total Environ ; 798: 149329, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375230

RESUMO

The objective of this case study was to explore the feasibility of using ecological models for applying an ecosystem services-based approach to environmental risk assessment using currently available data and methodologies. For this we used a 5 step approach: 1) selection of environmental scenario, 2) ecosystem service selection, 3) development of logic chains, 4) selection and application of ecological models and 5) detailed ecosystem service assessment. The study system is a European apple orchard managed according to integrated pest management principles. An organophosphate insecticide was used as the case study chemical. Four ecosystem services are included in this case study: soil quality regulation, pest control, pollination and recreation. Logic chains were developed for each ecosystem service and describe the link between toxicant effects on service providing units and ecosystem services delivery. For the soil quality regulation ecosystem service, springtails and earthworms were the service providing units, for the pest control ecosystem service it was ladybirds, for the pollination ecosystem service it was honeybees and for the recreation ecosystem service it was the meadow brown butterfly. All the ecological models addressed the spatio-temporal magnitude of the direct effects of the insecticide on the service providing units and ecological production functions were used to extrapolate these outcomes to the delivery of ecosystem services. For all ecosystem services a decision on the acceptability of the modelled and extrapolated effects on the service providing units could be made using the protection goals as set by the European Food Safety Authority (EFSA). Developing quantitative ecological production functions for extrapolation of ecosystem services delivery from population endpoints remains one of the major challenges. We feel that the use of ecological models can greatly add to this development, although the further development of existing ecological models, and of new models, is needed for this.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Abelhas , Monitoramento Ambiental , Modelos Teóricos , Polinização , Medição de Risco
6.
Sci Total Environ ; 789: 147857, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34323835

RESUMO

The feasibility and added value of an ecosystem services approach in retrospective environmental risk assessment were evaluated using a site-specific case study in a lowland UK river. The studied water body failed to achieve good ecological status temporarily in 2018, due in part to the exceedance of the environmental quality standard (annual average EQS) for zinc. Potential ecosystem service delivery was quantified for locally prioritised ecosystem services: regulation of chemical condition; maintaining nursery populations and habitats; recreational fishing; nature watching. Quantification was based on observed and expected taxa or functional groups within WFD biological quality elements, including macrophytes, benthic macroinvertebrates and fish, and on published functional trait data for constituent taxa. Benthic macroinvertebrate taxa were identified and enumerated before, during and after zinc EQS exceedance, enabling a generic retrospective risk assessment for this biological quality element, which was found to have good ecosystem service potential. An additional targeted risk assessment for zinc was based on laboratory-based species sensitivity distributions normalised using biotic-ligand modelling to account for site-specific, bioavailability-corrected zinc exposure. Risk to ecosystem services for diatoms (microalgae) was found to be high, while risks for benthic macroinvertebrates and fish were found to be low. The status of potential ecosystem service delivery (ESD) by fish was equivalent to high ecological status defined under the WFD, while ESD was higher for benthic macroinvertebrates than defined by WFD methods. The illustrated ecosystem services approach uses readily available data and adds significantly to the taxonomic approach currently used under the WFD by using functional traits to evaluate services that are prioritised as being important in water bodies. The main shortcomings of the illustrated approach were lack of: representation of bacteria and fungi; WFD predicted species lists for diatoms and macrophytes; site-specific functional trait data required for defining actual (rather than potential) ecosystem service delivery.

7.
Environ Sci Technol ; 53(1): 463-474, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30520632

RESUMO

The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of microdissected heart tissues showed that both chemicals targeted several molecular pathways constituting biomarkers for calcific aortic valve disease (CAVD), including extra-cellular matrix (ECM) alteration. ECM collagen deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA's reactive metabolite MBP and the development of valvular-cardiovascular disease states.


Assuntos
Compostos Benzidrílicos , Peixe-Zebra , Animais , Criança , Estrogênios , Humanos , Fenóis
8.
Sci Rep ; 8(1): 2699, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426849

RESUMO

Estrogen plays fundamental roles in a range of developmental processes and exposure to estrogen mimicking chemicals has been associated with various adverse health effects in both wildlife and human populations. Estrogenic chemicals are found commonly as mixtures in the environment and can have additive effects, however risk analysis is typically conducted for single-chemicals with little, or no, consideration given for an animal's exposure history. Here we developed a transgenic zebrafish with a photoconvertable fluorophore (Kaede, green to red on UV light exposure) in a skin pigment-free mutant element (ERE)-Kaede-Casper model and applied it to quantify tissue-specific fluorescence biosensor responses for combinations of estrogen exposures during early life using fluorescence microscopy and image analysis. We identify windows of tissue-specific sensitivity to ethinylestradiol (EE2) for exposure during early-life (0-5 dpf) and illustrate that exposure to estrogen (EE2) during 0-48 hpf enhances responsiveness (sensitivity) to different environmental estrogens (EE2, genistein and bisphenol A) for subsequent exposures during development. Our findings illustrate the importance of an organism's stage of development and estrogen exposure history for assessments on, and possible health risks associated with, estrogen exposure.


Assuntos
Exposição Ambiental/efeitos adversos , Etinilestradiol/efeitos adversos , Peixe-Zebra/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados/metabolismo , Compostos Benzidrílicos/metabolismo , Estrogênios/efeitos adversos , Estrogênios/metabolismo , Estrogênios/fisiologia , Etinilestradiol/metabolismo , Genisteína/metabolismo , Fenóis/metabolismo , Poluentes Químicos da Água/efeitos adversos , Peixe-Zebra/metabolismo
9.
Crit Rev Toxicol ; 48(2): 109-120, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28929839

RESUMO

Endocrine active chemicals (EACs) are widespread in freshwater environments and both laboratory and field based studies have shown reproductive effects in fish at environmentally relevant exposures. Environmental risk assessment (ERA) seeks to protect wildlife populations and prospective assessments rely on extrapolation from individual-level effects established for laboratory fish species to populations of wild fish using arbitrary safety factors. Population susceptibility to chemical effects, however, depends on exposure risk, physiological susceptibility, and population resilience, each of which can differ widely between fish species. Population models have significant potential to address these shortfalls and to include individual variability relating to life-history traits, demographic and density-dependent vital rates, and behaviors which arise from inter-organism and organism-environment interactions. Confidence in population models has recently resulted in the EU Commission stating that results derived from reliable models may be considered when assessing the relevance of adverse effects of EACs at the population level. This review critically assesses the potential risks posed by EACs for fish populations, considers the ecological factors influencing these risks and explores the benefits and challenges of applying population modeling (including individual-based modeling) in ERA for EACs in fish. We conclude that population modeling offers a way forward for incorporating greater environmental relevance in assessing the risks of EACs for fishes and for identifying key risk factors through sensitivity analysis. Individual-based models (IBMs) allow for the incorporation of physiological and behavioral endpoints relevant to EAC exposure effects, thus capturing both direct and indirect population-level effects.


Assuntos
Ecotoxicologia/métodos , Disruptores Endócrinos/toxicidade , Peixes , Medição de Risco/métodos , Animais , Peixes/fisiologia , Modelos Biológicos , Poluentes Químicos da Água/toxicidade
10.
Environ Sci Technol ; 51(3): 1764-1774, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28068076

RESUMO

Diclofenac is one of the most widely prescribed nonsteroidal anti-inflammatory drugs worldwide. It is frequently detected in surface waters; however, whether this pharmaceutical poses a risk to aquatic organisms is debated. Here we quantified the uptake of diclofenac by the fathead minnow (Pimephales promelas) following aqueous exposure (0.2-25.0 µg L-1) for 21 days, and evaluated the tissue and biomolecular responses in the kidney. Diclofenac accumulated in a concentration- and time-dependent manner in the plasma of exposed fish. The highest plasma concentration observed (for fish exposed to 25 µg L-1 diclofenac) was within the therapeutic range for humans. There was a strong positive correlation between exposure concentration and the number of developing nephrons observed in the posterior kidney. Diclofenac was not found to modulate the expression of genes in the kidney associated with its primary mode of action in mammals (prostaglandin-endoperoxide synthases) but modulated genes associated with kidney repair and regeneration. There were no significant adverse effects following 21 days exposure to concentrations typical of surface waters. The combination of diclofenac's uptake potential, effects on kidney nephrons and relatively small safety margin for some surface waters may warrant a longer term chronic health effects analysis for diclofenac in fish.


Assuntos
Disponibilidade Biológica , Diclofenaco/metabolismo , Animais , Cyprinidae/metabolismo , Rim/metabolismo , Poluentes Químicos da Água/metabolismo
11.
Integr Environ Assess Manag ; 13(1): 17-37, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27243906

RESUMO

This critical review examines the definition and implementation of environmental protection goals for chemicals in current European Union (EU) legislation, guidelines, and international agreements to which EU countries are party. The European chemical industry is highly regulated, and prospective environmental risk assessments (ERAs) are tailored for different classes of chemical, according to their specific hazards, uses, and environmental exposure profiles. However, environmental protection goals are often highly generic, requiring the prevention of "unacceptable" or "adverse" impacts on "biodiversity" and "ecosystems" or the "environment as a whole." This review aims to highlight working examples, challenges, solutions, and best practices for defining specific protection goals (SPGs), which are seen to be essential for refining and improving ERA. Specific protection goals hinge on discerning acceptable versus unacceptable adverse effects on the key attributes of relevant, sensitive ecological entities (ranging from organisms to ecosystems). Some isolated examples of SPGs for terrestrial and aquatic biota can be found in prospective ERA guidance for plant protection products (PPPs). However, SPGs are generally limited to environmental or nature legislation that requires environmental monitoring and retrospective ERA. This limitation is due mainly to the availability of baselines, which define acceptable versus unacceptable environmental effects on the key attributes of sentinel species, populations and/or communities, such as reproductive status, abundance, or diversity. Nevertheless, very few regulatory case examples exist in which SPGs incorporate effect magnitude, spatial extent, and temporal duration. We conclude that more holistic approaches are needed for defining SPGs, particularly with respect to protecting population sustainability, ecosystem function, and integrity, which are implicit in generic protection goals and explicit in the International Programme for Chemical Safety (IPCS) definition of "adverse effect." A possible solution, which the chemical industry is currently assessing, is wider application of the ecosystem services approach proposed by the European Food Safety Authority (EFSA) for the risk assessment of PPPs. Integr Environ Assess Manag 2017;13:17-37. © 2016 SETAC.


Assuntos
Monitoramento Ambiental/normas , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Ecotoxicologia , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental/métodos , Poluentes Ambientais , União Europeia , Inocuidade dos Alimentos , Medição de Risco/normas
12.
Sci Total Environ ; 580: 1222-1236, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28024744

RESUMO

Clearly defined protection goals specifying what to protect, where and when, are required for designing scientifically sound risk assessments and effective risk management of chemicals. Environmental protection goals specified in EU legislation are defined in general terms, resulting in uncertainty in how to achieve them. In 2010, the European Food Safety Authority (EFSA) published a framework to identify more specific protection goals based on ecosystem services potentially affected by plant protection products. But how applicable is this framework to chemicals with different emission scenarios and receptor ecosystems? Four case studies used to address this question were: (i) oil refinery waste water exposure in estuarine environments; (ii) oil dispersant exposure in aquatic environments; (iii) down the drain chemicals exposure in a wide range of ecosystems (terrestrial and aquatic); (iv) persistent organic pollutant exposure in remote (pristine) Arctic environments. A four-step process was followed to identify ecosystems and services potentially impacted by chemical emissions and to define specific protection goals. Case studies demonstrated that, in principle, the ecosystem services concept and the EFSA framework can be applied to derive specific protection goals for a broad range of chemical exposure scenarios. By identifying key habitats and ecosystem services of concern, the approach offers the potential for greater spatial and temporal resolution, together with increased environmental relevance, in chemical risk assessments. With modifications including improved clarity on terminology/definitions and further development/refinement of the key concepts, we believe the principles of the EFSA framework could provide a methodical approach to the identification and prioritization of ecosystems, ecosystem services and the service providing units that are most at risk from chemical exposure.

13.
Environ Sci Technol ; 50(12): 6536-45, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27227508

RESUMO

Rapid embryogenesis, together with genetic similarities with mammals, and the desire to reduce mammalian testing, are major incentives for using the zebrafish model in chemical screening and testing. Transgenic zebrafish, engineered for identifying target gene expression through expression of fluorophores, have considerable potential for both high-content and high-throughput testing of chemicals for endocrine activity. Here we generated an estrogen responsive transgenic zebrafish model in a pigment-free "Casper" phenotype, facilitating identification of target tissues and quantification of these responses in whole intact fish. Using the ERE-GFP-Casper model we show chemical type and concentration dependence for green fluorescent protein (GFP) induction and both spatial and temporal responses for different environmental estrogens tested. We also developed a semiautomated (ArrayScan) imaging and image analysis system that we applied to quantify whole body fluorescence responses for a range of different estrogenic chemicals in the new transgenic zebrafish model. The zebrafish model developed provides a sensitive and highly integrative system for identifying estrogenic chemicals, their target tissues and effect concentrations for exposures in real time and across different life stages. It thus has application for chemical screening to better direct health effects analysis of environmental estrogens and for investigating the functional roles of estrogens in vertebrates.


Assuntos
Animais Geneticamente Modificados , Peixe-Zebra/metabolismo , Animais , Estrogênios/metabolismo , Estrona/metabolismo , Proteínas de Peixe-Zebra/genética
14.
Proc Natl Acad Sci U S A ; 112(11): E1237-46, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733876

RESUMO

Endocrine disrupting chemicals (EDCs) are potent environmental contaminants, and their effects on wildlife populations could be exacerbated by climate change, especially in species with environmental sex determination. Endangered species may be particularly at risk because inbreeding depression and stochastic fluctuations in male and female numbers are often observed in the small populations that typify these taxa. Here, we assessed the interactive effects of water temperature and EDC exposure on sexual development and population viability of inbred and outbred zebrafish (Danio rerio). Water temperatures adopted were 28 °C (current ambient mean spawning temperature) and 33 °C (projected for the year 2100). The EDC selected was clotrimazole (at 2 µg/L and 10 µg/L), a widely used antifungal chemical that inhibits a key steroidogenic enzyme [cytochrome P450(CYP19) aromatase] required for estrogen synthesis in vertebrates. Elevated water temperature and clotrimazole exposure independently induced male-skewed sex ratios, and the effects of clotrimazole were greater at the higher temperature. Male sex ratio skews also occurred for the lower clotrimazole exposure concentration at the higher water temperature in inbred fish but not in outbred fish. Population viability analysis showed that population growth rates declined sharply in response to male skews and declines for inbred populations occurred at lower male skews than for outbred populations. These results indicate that elevated temperature associated with climate change can amplify the effects of EDCs and these effects are likely to be most acute in small, inbred populations exhibiting environmental sex determination and/or differentiation.


Assuntos
Mudança Climática , Poluição Ambiental/análise , Peixe-Zebra/crescimento & desenvolvimento , Animais , Clotrimazol/toxicidade , Exposição Ambiental/análise , Feminino , Células Germinativas/citologia , Células Germinativas/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Endogamia , Masculino , Modelos Biológicos , Dinâmica Populacional , Temperatura , Fatores de Tempo
15.
Philos Trans R Soc Lond B Biol Sci ; 369(1656)2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25405959

RESUMO

Global pharmaceutical consumption is rising with the growing and ageing human population and more intensive food production. Recent studies have revealed pharmaceutical residues in a wide range of ecosystems and organisms. Environmental concentrations are often low, but pharmaceuticals typically are designed to have biological effects at low doses, acting on physiological systems that can be evolutionarily conserved across taxa. This Theme Issue introduces the latest research investigating the risks of environmentally relevant concentrations of pharmaceuticals to vertebrate wildlife. We take a holistic, global view of environmental exposure to pharmaceuticals encompassing terrestrial, freshwater and marine ecosystems in high- and low-income countries. Based on both field and laboratory data, the evidence for and relevance of changes to physiology and behaviour, in addition to mortality and reproductive effects, are examined in terms of the population- and community-level consequences of pharmaceutical exposure on wildlife. Studies on uptake, trophic transfer and indirect effects of pharmaceuticals acting via food webs are presented. Given the logistical and ethical complexities of research in this area, several papers focus on techniques for prioritizing which compounds are most likely to harm wildlife and how modelling approaches can make predictions about the bioavailability, metabolism and toxicity of pharmaceuticals in non-target species. This Theme Issue aims to help clarify the uncertainties, highlight opportunities and inform ongoing scientific and policy debates on the impacts of pharmaceuticals in the environment.


Assuntos
Animais Selvagens , Ecossistema , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Preparações Farmacêuticas/química , Vertebrados/metabolismo , Animais , Conservação dos Recursos Naturais , Ecotoxicologia , Exposição Ambiental , Humanos , Preparações Farmacêuticas/metabolismo
17.
Biol Lett ; 9(4): 20130492, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23804293

RESUMO

The use of human and veterinary pharmaceuticals is increasing. Over the past decade, there has been a proliferation of research into potential environmental impacts of pharmaceuticals in the environment. A Royal Society-supported seminar brought together experts from diverse scientific fields to discuss the risks posed by pharmaceuticals to wildlife. Recent analytical advances have revealed that pharmaceuticals are entering habitats via water, sewage, manure and animal carcases, and dispersing through food chains. Pharmaceuticals are designed to alter physiology at low doses and so can be particularly potent contaminants. The near extinction of Asian vultures following exposure to diclofenac is the key example where exposure to a pharmaceutical caused a population-level impact on non-target wildlife. However, more subtle changes to behaviour and physiology are rarely studied and poorly understood. Grand challenges for the future include developing more realistic exposure assessments for wildlife, assessing the impacts of mixtures of pharmaceuticals in combination with other environmental stressors and estimating the risks from pharmaceutical manufacturing and usage in developing countries. We concluded that an integration of diverse approaches is required to predict 'unexpected' risks; specifically, ecologically relevant, often long-term and non-lethal, consequences of pharmaceuticals in the environment for wildlife and ecosystems.


Assuntos
Exposição Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Preparações Farmacêuticas/metabolismo , Vertebrados/metabolismo , Animais , Animais Selvagens/metabolismo , Conservação dos Recursos Naturais , Monitoramento Ambiental , Cadeia Alimentar , Humanos
18.
Aquat Toxicol ; 112-113: 27-38, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22360940

RESUMO

Outbred laboratory animal strains used in ecotoxicology are intended to represent wild populations. However, breeding history may vary considerably between strains, driving differences in genetic variation and phenotypes used for assessing effects of chemical exposure. We compared a range of phenotypic endpoints in zebrafish from four different "breeding treatments" comprising a Wild Indian Karyotype (WIK) zebrafish strain and a WIK/Wild strain with three levels of inbreeding (F(IT)=n, n+0.25, n+0.375) in a new Fish Sexual Development Test (FSDT). There were no differences between treatments in terms of egg viability, hatch success or fry survival. However, compared with WIKs, WIK/Wild hybrids were significantly larger in size, with more advanced gonadal (germ cell) development at the end of the test (63 days post fertilisation). Increasing the levels of inbreeding in the related WIK/Wild lines did not affect body size, but there was a significant male-bias (72%) in the most inbred line (F(IT)=n+0.375). Conversely, in the reference WIK strain there was a significant female-bias in the population (80% females). Overall, our results support the use of outbred zebrafish strains in the FSDT, where one of the core endpoints is sex ratio. Despite increased variance (and reduced statistical power) for some endpoints, WIK/Wild outbreds (F(IT)=n) met all acceptance criteria for controls in this test, whereas WIKs failed to comply with tolerance limits for sex ratio (30-70% females). Sexual development was also more advanced in WIK/Wild outbreds (cf. WIKs), providing greater scope for detection of developmental reproductive toxicity following chemical exposure.


Assuntos
Cruzamento , Desenvolvimento Sexual/fisiologia , Testes de Toxicidade , Peixe-Zebra/fisiologia , Animais , Tamanho Corporal , Feminino , Variação Genética , Gônadas/crescimento & desenvolvimento , Endogamia , Masculino , Especificidade da Espécie , Fatores de Tempo , Peixe-Zebra/genética
19.
Environ Sci Technol ; 45(9): 4166-72, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21469706

RESUMO

Laboratory animals tend to be more inbred and less genetically diverse than wild populations, and thus may differ in their susceptibility to chemical stressors. We tested this hypothesis by comparing the responses of related inbred (theoretical inbreeding F(IT) = n + 0.25) and outbred (F(IT) = n) zebrafish (Danio rerio) WIK/Wild family lines to an endocrine disrupting chemical, clotrimazole. Exposure of inbred and outbred zebrafish to 2.9 µg clotrimazole/L had no effect on survival, growth, or gonadal development. Exposure of both lines to 43.7 µg clotrimazole/L led to male-biased sex ratios compared with controls (87% versus 55% and 92% vs 64%, for inbred and outbred males, respectively), advanced germ cell development, and reduced plasma 11-ketotestosterone concentrations in males. However, outbred males (but not inbred males) developed testis that were more than twice the weight of controls, which corresponded with a proliferation of Leydig cells and maintenance of the expression (rather than down-regulation occurring in inbreds) of gonadal aromatase (cyp19a1a) and insulin-like growth factor (igf1). Our results illustrate that the effects of an endocrine disrupting chemical (clotrimazole) on some end points (here testis development) can differ between inbred and outbred zebrafish. This highlights the need for reporting pedigree/genetic information and consistency in the responses of laboratory animals (e.g., by using model compounds as positive controls).


Assuntos
Clotrimazol/toxicidade , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Variação Genética , Gônadas/efeitos dos fármacos , Gônadas/crescimento & desenvolvimento , Masculino , Diferenciação Sexual/efeitos dos fármacos , Testosterona/análogos & derivados , Testosterona/sangue , Peixe-Zebra/genética
20.
Philos Trans R Soc Lond B Biol Sci ; 364(1534): 3377-90, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19833649

RESUMO

Exposure to environmental chemicals can have negative consequences for wildlife and even cause localized population extinctions. Resistance to chemical stress, however, can evolve and the mechanisms include desensitized target sites, reduced chemical uptake and increased metabolic detoxification and sequestration. Chemical resistance in wildlife populations can also arise independently of exposure and may be spread by gene flow between populations. Inbreeding-matings between closely related individuals-can have negative fitness consequences for natural populations, and there is evidence of inbreeding depression in many wildlife populations. In some cases, reduced fitness in inbred populations has been shown to be exacerbated under chemical stress. In chemical testing, both inbred and outbred laboratory animals are used and for human safety assessments, iso-genic strains (virtual clones) of mice and rats are often employed that reduce response variation, the number of animals used and associated costs. In contrast, for environmental risk assessment, strains of animals are often used that have been selectively bred to maintain heterozygosity, with the assumption that they are better able to predict adverse effects in wild, genetically variable, animals. This may not necessarily be the case however, as one outbred strain may not be representative of another or of a wild population. In this paper, we critically discuss relationships between genetic variation, inbreeding and chemical effects with the intention of seeking to support more effective chemical testing for the protection of wildlife.


Assuntos
Animais Selvagens/genética , Ecotoxicologia/métodos , Poluentes Ambientais/toxicidade , Variação Genética , Endogamia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...