Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 65(5): 1176-1202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426252

RESUMO

Computer vision (CV) shows increasing promise as an efficient, low-cost tool for video seizure detection and classification. Here, we provide an overview of the fundamental concepts needed to understand CV and summarize the structure and performance of various model architectures used in video seizure analysis. We conduct a systematic literature review of the PubMed, Embase, and Web of Science databases from January 1, 2000 to September 15, 2023, to identify the strengths and limitations of CV seizure analysis methods and discuss the utility of these models when applied to different clinical seizure phenotypes. Reviews, nonhuman studies, and those with insufficient or poor quality data are excluded from the review. Of the 1942 records identified, 45 meet inclusion criteria and are analyzed. We conclude that the field has shown tremendous growth over the past 2 decades, leading to several model architectures with impressive accuracy and efficiency. The rapid and scalable detection offered by CV models holds the potential to reduce sudden unexpected death in epilepsy and help alleviate resource limitations in epilepsy monitoring units. However, a lack of standardized, thorough validation measures and concerns about patient privacy remain important obstacles for widespread acceptance and adoption. Investigation into the performance of models across varied datasets from clinical and nonclinical environments is an essential area for further research.


Assuntos
Convulsões , Humanos , Convulsões/diagnóstico , Convulsões/classificação , Eletroencefalografia/métodos , Gravação em Vídeo/métodos
2.
Nature ; 589(7842): 474-479, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299186

RESUMO

The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.


Assuntos
Comportamento Aditivo/tratamento farmacológico , Desenho de Fármacos , Ibogaína/análogos & derivados , Ibogaína/efeitos adversos , Alcoolismo/tratamento farmacológico , Animais , Antidepressivos/farmacologia , Arritmias Cardíacas/induzido quimicamente , Técnicas de Química Sintética , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Alucinógenos/efeitos adversos , Dependência de Heroína/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Segurança do Paciente , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Natação , Tabernaemontana/química
3.
PLoS One ; 15(3): e0222619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32150577

RESUMO

Ion channels have recently attracted attention as potential mediators of skin disease. Here, we explored the consequences of genetically encoded induction of the cell volume-regulating Ca2+-activated KCa3.1 channel (Kcnn4) for murine epidermal homeostasis. Doxycycline-treated mice harboring the KCa3.1+-transgene under the control of the reverse tetracycline-sensitive transactivator (rtTA) showed 800-fold channel overexpression above basal levels in the skin and solid KCa3.1-currents in keratinocytes. This overexpression resulted in epidermal spongiosis, progressive epidermal hyperplasia and hyperkeratosis, itch and ulcers. The condition was accompanied by production of the pro-proliferative and pro-inflammatory cytokines, IL-ß1 (60-fold), IL-6 (33-fold), and TNFα (26-fold) in the skin. Treatment of mice with the KCa3.1-selective blocker, Senicapoc, significantly suppressed spongiosis and hyperplasia, as well as induction of IL-ß1 (-88%) and IL-6 (-90%). In conclusion, KCa3.1-induction in the epidermis caused expression of pro-proliferative cytokines leading to spongiosis, hyperplasia and hyperkeratosis. This skin condition resembles pathological features of eczematous dermatitis and identifies KCa3.1 as a regulator of epidermal homeostasis and spongiosis, and as a potential therapeutic target.


Assuntos
Eczema/genética , Epiderme/patologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Ceratose/genética , Pele/metabolismo , Transgenes , Acetamidas/farmacologia , Animais , Citocinas/metabolismo , Doxiciclina/farmacologia , Eczema/tratamento farmacológico , Feminino , Homeostase/genética , Hiperplasia/tratamento farmacológico , Hiperplasia/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Queratinócitos/metabolismo , Ceratose/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transativadores/metabolismo , Compostos de Tritil/farmacologia
4.
J Chem Inf Model ; 60(3): 1779-1790, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32105478

RESUMO

Preclinical assessment of drug-induced proarrhythmicity is typically evaluated by the potency of the drug to block the potassium human ether-à-go-go-related gene (hERG) channels, which is currently quantified by the IC50. However, channel block depends on the experimental conditions. Our aim is to improve the evaluation of the blocking potency of drugs by designing experimental stimulation protocols to measure the IC50 that will help to decide whether the IC50 is representative enough. We used the state-of-the-art mathematical models of the cardiac electrophysiological activity to design three stimulation protocols that enhance the differences in the probabilities to occupy a certain conformational state of the channel and, therefore, the potential differences in the blocking effects of a compound. We simulated an extensive set of 144 in silico IKr blockers with different kinetics and affinities to conformational states of the channel and we also experimentally validated our key predictions. Our results show that the IC50 protocol dependency relied on the tested compounds. Some of them showed no differences or small differences on the IC50 value, which suggests that the IC50 could be a good indicator of the blocking potency in these cases. However, others provided highly protocol dependent IC50 values, which could differ by even 2 orders of magnitude. Moreover, the protocols yielding the maximum IC50 and minimum IC50 depended on the drug, which complicates the definition of a "standard" protocol to minimize the influence of the stimulation protocol on the IC50 measurement in safety pharmacology. As a conclusion, we propose the adoption of our three-protocol IC50 assay to estimate the potency to block hERG in vitro. If the IC50 values obtained for a compound are similar, then the IC50 could be used as an indicator of its blocking potency, otherwise kinetics and state-dependent binding properties should be accounted.


Assuntos
Preparações Farmacêuticas , Bloqueadores dos Canais de Potássio , Simulação por Computador , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Cinética , Bloqueadores dos Canais de Potássio/farmacologia
5.
Annu Rev Pharmacol Toxicol ; 60: 219-240, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337271

RESUMO

The three small-conductance calcium-activated potassium (KCa2) channels and the related intermediate-conductance KCa3.1 channel are voltage-independent K+ channels that mediate calcium-induced membrane hyperpolarization. When intracellular calcium increases in the channel vicinity, it calcifies the flexible N lobe of the channel-bound calmodulin, which then swings over to the S4-S5 linker and opens the channel. KCa2 and KCa3.1 channels are highly druggable and offer multiple binding sites for venom peptides and small-molecule blockers as well as for positive- and negative-gating modulators. In this review, we briefly summarize the physiological role of KCa channels and then discuss the pharmacophores and the mechanism of action of the most commonly used peptidic and small-molecule KCa2 and KCa3.1 modulators. Finally, we describe the progress that has been made in advancing KCa3.1 blockers and KCa2.2 negative- and positive-gating modulators toward the clinic for neurological and cardiovascular diseases and discuss the remaining challenges.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Animais , Sítios de Ligação , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/fisiopatologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
6.
Front Pharmacol ; 10: 972, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616290

RESUMO

Calcium-activated K+ channels constitute attractive targets for the treatment of neurological and cardiovascular diseases. To explain why certain 2-aminobenzothiazole/oxazole-type KCa activators (SKAs) are KCa3.1 selective we previously generated homology models of the C-terminal calmodulin-binding domain (CaM-BD) of KCa3.1 and KCa2.3 in complex with CaM using Rosetta modeling software. We here attempted to employ this atomistic level understanding of KCa activator binding to switch selectivity around and design KCa2.2 selective activators as potential anticonvulsants. In this structure-based drug design approach we used RosettaLigand docking and carefully compared the binding poses of various SKA compounds in the KCa2.2 and KCa3.1 CaM-BD/CaM interface pocket. Based on differences between residues in the KCa2.2 and KCa.3.1 models we virtually designed 168 new SKA compounds. The compounds that were predicted to be both potent and KCa2.2 selective were synthesized, and their activity and selectivity tested by manual or automated electrophysiology. However, we failed to identify any KCa2.2 selective compounds. Based on the full-length KCa3.1 structure it was recently demonstrated that the C-terminal crystal dimer was an artefact and suggested that the "real" binding pocket for the KCa activators is located at the S4-S5 linker. We here confirmed this structural hypothesis through mutagenesis and now offer a new, corrected binding site model for the SKA-type KCa channel activators. SKA-111 (5-methylnaphtho[1,2-d]thiazol-2-amine) is binding in the interface between the CaM N-lobe and the S4-S5 linker where it makes van der Waals contacts with S181 and L185 in the S45A helix of KCa3.1.

7.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-30755796

RESUMO

As their name implies, cation channels allow the regulated flow of cations such as sodium, potassium, calcium, and magnesium across cellular and intracellular membranes. Cation channels have long been known for their fundamental roles in controlling membrane potential and excitability in neurons and muscle. In this review, we provide an update on the recent advances in our understanding of the structure-function relationship and the physiological and pathophysiological role of cation channels. The most exciting developments in the last two years, in our opinion, have been the insights that cryoelectron microscopy has provided into the inner life and the gating of not only voltage-gated channels but also mechanosensitive and calcium- or sodium-activated channels. The mechanosensitive Piezo channels especially have delighted the field not only with a fascinating new type of structure but with important roles in blood pressure regulation and lung function.


Assuntos
Cátions , Canais Iônicos/fisiologia , Pressão Sanguínea , Cálcio , Microscopia Crioeletrônica , Humanos , Canais Iônicos/química , Pulmão/fisiologia , Magnésio , Potenciais da Membrana , Músculos/fisiologia , Neurônios/fisiologia , Potássio , Sódio
8.
Curr Neuropharmacol ; 16(5): 618-626, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28676010

RESUMO

BACKGROUND: The intermediate-conductance Ca2+-activated K+ channel KCa3.1 is widely expressed in cells of the immune system such as T- and B-lymphocytes, mast cells, macrophages and microglia, but also found in dedifferentiated vascular smooth muscle cells, fibroblasts and many cancer cells including pancreatic, prostate, leukemia and glioblastoma. In all these cell types KCa3.1 plays an important role in cellular activation, migration and proliferation by regulating membrane potential and Ca2+ signaling. METHODS AND RESULTS: KCa3.1 therefore constitutes an attractive therapeutic target for diseases involving excessive proliferation or activation of one more of these cell types and researchers both in academia and in the pharmaceutical industry have developed several potent and selective small molecule inhibitors of KCa3.1. This article will briefly review the available compounds (TRAM-34, senicapoc, NS6180), their binding sites and mechanisms of action, and then discuss the potential usefulness of these compounds for the treatment of brain tumors based on their brain penetration and their efficacy in reducing microglia activation in animal models of ischemic stroke and Alzheimer's disease. CONCLUSION: Senicapoc, which has previously been in Phase III clinical trials, would be available for repurposing, and could be used to quickly translate findings made with other KCa3.1 blocking tool compounds into clinical trials.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Moduladores de Transporte de Membrana/uso terapêutico , Acetamidas/química , Acetamidas/uso terapêutico , Animais , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Humanos , Pirazóis/química , Pirazóis/uso terapêutico , Compostos de Tritil/química , Compostos de Tritil/uso terapêutico
10.
Mol Pharmacol ; 92(4): 469-480, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760780

RESUMO

Intermediate-conductance (KCa3.1) and small-conductance (KCa2) calcium-activated K+ channels are gated by calcium binding to calmodulin (CaM) molecules associated with the calmodulin-binding domain (CaM-BD) of these channels. The existing KCa activators, such as naphtho[1,2-d]thiazol-2-ylamine (SKA-31), 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309), and 1-ethylbenzimidazolin-2-one (EBIO), activate both channel types with similar potencies. In a previous chemistry effort, we optimized the benzothiazole pharmacophore of SKA-31 toward KCa3.1 selectivity and identified 5-methylnaphtho[2,1-d]oxazol-2-amine (SKA-121), which exhibits 40-fold selectivity for KCa3.1 over KCa2.3. To understand why introduction of a single CH3 group in five-position of the benzothiazole/oxazole system could achieve such a gain in selectivity for KCa3.1 over KCa2.3, we first localized the binding site of the benzothiazoles/oxazoles to the CaM-BD/CaM interface and then used computational modeling software to generate models of the KCa3.1 and KCa2.3 CaM-BD/CaM complexes with SKA-121. Based on a combination of mutagenesis and structural modeling, we suggest that all benzothiazole/oxazole-type KCa activators bind relatively "deep" in the CaM-BD/CaM interface and hydrogen bond with E54 on CaM. In KCa3.1, SKA-121 forms an additional hydrogen bond network with R362. In contrast, NS309 sits more "forward" and directly hydrogen bonds with R362 in KCa3.1. Mutating R362 to serine, the corresponding residue in KCa2.3 reduces the potency of SKA-121 by 7-fold, suggesting that R362 is responsible for the generally greater potency of KCa activators on KCa3.1. The increase in SKA-121's KCa3.1 selectivity compared with its parent, SKA-31, seems to be due to better overall shape complementarity and hydrophobic interactions with S372 and M368 on KCa3.1 and M72 on CaM at the KCa3.1-CaM-BD/CaM interface.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/química , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Ativação do Canal Iônico/fisiologia , Oxazóis/metabolismo , Oxazóis/farmacologia , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/agonistas , Ativação do Canal Iônico/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
11.
Neuropharmacology ; 121: 204-218, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28457974

RESUMO

Ionotropic glutamate receptors (iGluRs) mediate fast excitatory neurotransmission and are key nervous system drug targets. While diverse pharmacological tools have yielded insight into iGluR extracellular domain function, less is known about molecular mechanisms underlying the ion conduction gating process within the transmembrane domain (TMD). We have discovered a novel NMDAR positive allosteric modulator (PAM), GNE-9278, with a unique binding site on the extracellular surface of the TMD. Mutation of a single residue near the Lurcher motif on GluN1 M3 can convert GNE-9278 modulation from positive to negative, and replacing three AMPAR pre-M1 residues with corresponding NMDAR residues can confer GNE-9278 sensitivity to AMPARs. Modulation by GNE-9278 is state-dependent and significantly alters extracellular domain pharmacology. The unique properties and structural determinants of GNE-9278 reveal new modulatory potential of the iGluR TMD.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Doxiciclina/farmacologia , Estimulação Elétrica , Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Glicina/metabolismo , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Técnicas de Patch-Clamp , Domínios Proteicos/efeitos dos fármacos , Domínios Proteicos/genética , Pirimidinonas/química , Pirimidinonas/farmacologia , Receptores de N-Metil-D-Aspartato/genética , Sulfonamidas/química , Sulfonamidas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Transfecção
12.
Int J Biochem Cell Biol ; 76: 19-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129924

RESUMO

The activity of positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (AChRs), including 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), 3-furan-2-yl-N-o-tolylacrylamide (PAM-3), and 3-furan-2-yl-N-phenylacrylamide (PAM-4), was tested on a variety of ligand- [i.e., human (h) α7, rat (r) α9α10, hα3-containing AChRs, mouse (m) 5-HT3AR, and several glutamate receptors (GluRs)] and voltage-gated (i.e., sodium and potassium) ion channels, as well as on acetylcholinesterase (AChE) and ß-amyloid (Aß) content. The functional results indicate that PAM-2 inhibits hα3-containing AChRs (IC50=26±6µM) with higher potency than that for NR1aNR2B and NR1aNR2A, two NMDA-sensitive GluRs. PAM-2 affects neither the activity of m5-HT3ARs, GluR5/KA2 (a kainate-sensitive GluR), nor AChE, and PAM-4 does not affect agonist-activated rα9α10 AChRs. Relevant clinical concentrations of PAM-2-4 do not inhibit Nav1.2 and Kv3.1 ion channels. These PAMs slightly enhance the activity of GluR1 and GluR2, two AMPA-sensitive GluRs. PAM-2 does not change the levels of Aß42 in an Alzheimer's disease mouse model (i.e., 5XFAD). The molecular docking and dynamics results using the hα7 model suggest that the active sites for PAM-2 include the intrasubunit (i.e., PNU-120596 locus) and intersubunit sites. These results support our previous study showing that these PAMs are selective for the α7 AChR, and clarify that the procognitive/promnesic/antidepressant activity of PAM-2 is not mediated by other targets.


Assuntos
Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolinesterase/genética , Regulação Alostérica/efeitos dos fármacos , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Humanos , Canais Iônicos de Abertura Ativada por Ligante/genética , Camundongos , Fragmentos de Peptídeos/genética , Ratos , Receptor Nicotínico de Acetilcolina alfa7/genética
13.
Neurotherapeutics ; 12(1): 234-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25256961

RESUMO

Inhibitors of voltage-gated sodium channels (Na(v)) have been used as anticonvulsants since the 1940s, while potassium channel activators have only been investigated more recently. We here describe the discovery of 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a thioanalog of riluzole, as a potent, novel anticonvulsant, which combines the two mechanisms. SKA-19 is a use-dependent NaV channel blocker and an activator of small-conductance Ca(2+)-activated K(+) channels. SKA-19 reduces action potential firing and increases medium afterhyperpolarization in CA1 pyramidal neurons in hippocampal slices. SKA-19 is orally bioavailable and shows activity in a broad range of rodent seizure models. SKA-19 protects against maximal electroshock-induced seizures in both rats (ED50 1.6 mg/kg i.p.; 2.3 mg/kg p.o.) and mice (ED50 4.3 mg/kg p.o.), and is also effective in the 6-Hz model in mice (ED50 12.2 mg/kg), Frings audiogenic seizure-susceptible mice (ED50 2.2 mg/kg), and the hippocampal kindled rat model of complex partial seizures (ED50 5.5 mg/kg). Toxicity tests for abnormal neurological status revealed a therapeutic index (TD50/ED50) of 6-9 following intraperitoneal and of 33 following oral administration. SKA-19 further reduced acute pain in the formalin pain model and raised allodynic threshold in a sciatic nerve ligation model. The anticonvulsant profile of SKA-19 is comparable to riluzole, which similarly affects Na(V) and KCa2 channels, except that SKA-19 has a ~4-fold greater duration of action owing to more prolonged brain levels. Based on these findings we propose that compounds combining KCa2 channel-activating and Na(v) channel-blocking activity exert broad-spectrum anticonvulsant and analgesic effects.


Assuntos
Anticonvulsivantes/farmacologia , Riluzol/análogos & derivados , Riluzol/farmacologia , Convulsões/tratamento farmacológico , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Canais de Sódio Disparados por Voltagem/metabolismo
14.
Mol Pharmacol ; 87(2): 338-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25468883

RESUMO

Small/intermediate conductance KCa channels (KCa2/3) are Ca(2+)/calmodulin regulated K(+) channels that produce membrane hyperpolarization and shape neurologic, epithelial, cardiovascular, and immunologic functions. Moreover, they emerged as therapeutic targets to treat cardiovascular disease, chronic inflammation, and some cancers. Here, we aimed to generate a new pharmacophore for negative-gating modulation of KCa2/3 channels. We synthesized a series of mono- and dibenzoates and identified three dibenzoates [1,3-phenylenebis(methylene) bis(3-fluoro-4-hydroxybenzoate) (RA-2), 1,2-phenylenebis(methylene) bis(3-fluoro-4-hydroxybenzoate), and 1,4-phenylenebis(methylene) bis(3-fluoro-4-hydroxybenzoate)] with inhibitory efficacy as determined by patch clamp. Among them, RA-2 was the most drug-like and inhibited human KCa3.1 with an IC50 of 17 nM and all three human KCa2 subtypes with similar potencies. RA-2 at 100 nM right-shifted the KCa3.1 concentration-response curve for Ca(2+) activation. The positive-gating modulator naphtho[1,2-d]thiazol-2-ylamine (SKA-31) reversed channel inhibition at nanomolar RA-2 concentrations. RA-2 had no considerable blocking effects on distantly related large-conductance KCa1.1, Kv1.2/1.3, Kv7.4, hERG, or inwardly rectifying K(+) channels. In isometric myography on porcine coronary arteries, RA-2 inhibited bradykinin-induced endothelium-derived hyperpolarization (EDH)-type relaxation in U46619-precontracted rings. Blood pressure telemetry in mice showed that intraperitoneal application of RA-2 (≤100 mg/kg) did not increase blood pressure or cause gross behavioral deficits. However, RA-2 decreased heart rate by ≈145 beats per minute, which was not seen in KCa3.1(-/-) mice. In conclusion, we identified the KCa2/3-negative-gating modulator, RA-2, as a new pharmacophore with nanomolar potency. RA-2 may be of use to generate structurally new types of negative-gating modulators that could help to define the physiologic and pathomechanistic roles of KCa2/3 in the vasculature, central nervous system, and during inflammation in vivo.


Assuntos
Bradicardia/induzido quimicamente , Vasos Coronários/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Vasodilatação/efeitos dos fármacos , Animais , Benzoatos/química , Benzoatos/farmacologia , Bradicardia/fisiopatologia , Vasos Coronários/fisiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Feminino , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Ativação do Canal Iônico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Bloqueadores dos Canais de Potássio/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Vasodilatação/fisiologia
15.
Mol Pharmacol ; 86(3): 342-57, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24958817

RESUMO

Small-conductance (KCa2) and intermediate-conductance (KCa3.1) calcium-activated K(+) channels are voltage-independent and share a common calcium/calmodulin-mediated gating mechanism. Existing positive gating modulators like EBIO, NS309, or SKA-31 activate both KCa2 and KCa3.1 channels with similar potency or, as in the case of CyPPA and NS13001, selectively activate KCa2.2 and KCa2.3 channels. We performed a structure-activity relationship (SAR) study with the aim of optimizing the benzothiazole pharmacophore of SKA-31 toward KCa3.1 selectivity. We identified SKA-111 (5-methylnaphtho[1,2-d]thiazol-2-amine), which displays 123-fold selectivity for KCa3.1 (EC50 111 ± 27 nM) over KCa2.3 (EC50 13.7 ± 6.9 µM), and SKA-121 (5-methylnaphtho[2,1-d]oxazol-2-amine), which displays 41-fold selectivity for KCa3.1 (EC50 109 nM ± 14 nM) over KCa2.3 (EC50 4.4 ± 1.6 µM). Both compounds are 200- to 400-fold selective over representative KV (KV1.3, KV2.1, KV3.1, and KV11.1), NaV (NaV1.2, NaV1.4, NaV1.5, and NaV1.7), as well as CaV1.2 channels. SKA-121 is a typical positive-gating modulator and shifts the calcium-concentration response curve of KCa3.1 to the left. In blood pressure telemetry experiments, SKA-121 (100 mg/kg i.p.) significantly lowered mean arterial blood pressure in normotensive and hypertensive wild-type but not in KCa3.1(-/-) mice. SKA-111, which was found in pharmacokinetic experiments to have a much longer half-life and to be much more brain penetrant than SKA-121, not only lowered blood pressure but also drastically reduced heart rate, presumably through cardiac and neuronal KCa2 activation when dosed at 100 mg/kg. In conclusion, with SKA-121, we generated a KCa3.1-specific positive gating modulator suitable for further exploring the therapeutical potential of KCa3.1 activation.


Assuntos
Benzotiazóis/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Oxazóis/farmacologia , Animais , Benzotiazóis/química , Benzotiazóis/farmacocinética , Pressão Sanguínea/efeitos dos fármacos , Bradicinina/farmacologia , Células COS , Chlorocebus aethiops , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Cristalografia por Raios X , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Ativação do Canal Iônico , Contração Isométrica , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Oxazóis/química , Oxazóis/farmacocinética , Relação Estrutura-Atividade , Suínos , Vasodilatadores/farmacologia
16.
Assay Drug Dev Technol ; 11(9-10): 551-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24351043

RESUMO

The intermediate-conductance Ca(2+)-activated K(+) channel KCa3.1 (also known as KCNN4, IK1, or the Gárdos channel) plays an important role in the activation of T and B cells, mast cells, macrophages, and microglia by regulating membrane potential, cellular volume, and calcium signaling. KCa3.1 is further involved in the proliferation of dedifferentiated vascular smooth muscle cells and fibroblast and endothelium-derived hyperpolarization responses in the vascular endothelium. Accordingly, KCa3.1 inhibitors are therapeutically interesting as immunosuppressants and for the treatment of a wide range of fibroproliferative disorders, whereas KCa3.1 activators constitute a potential new class of endothelial function preserving antihypertensives. Here, we report the development of QPatch assays for both KCa3.1 inhibitors and activators. During assay optimization, the Ca(2+) sensitivity of KCa3.1 was studied using varying intracellular Ca(2+) concentrations. A free Ca(2+) concentration of 1 µM was chosen to optimally test inhibitors. To identify activators, which generally act as positive gating modulators, a lower Ca(2+) concentration (∼200 nM) was used. The QPatch results were benchmarked against manual patch-clamp electrophysiology by determining the potency of several commonly used KCa3.1 inhibitors (TRAM-34, NS6180, ChTX) and activators (EBIO, riluzole, SKA-31). Collectively, our results demonstrate that the QPatch provides a comparable but much faster approach to study compound interactions with KCa3.1 channels in a robust and reliable assay.


Assuntos
Bioensaio/métodos , Citometria de Fluxo/métodos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Bloqueadores dos Canais de Potássio/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Análise de Injeção de Fluxo/métodos , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Robótica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...