Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Pacing Clin Electrophysiol ; 47(4): 533-541, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38477034

RESUMO

BACKGROUND: Optimization of atrial-ventricular delay (AVD) during atrial sensing (SAVD) and pacing (PAVD) provides the most effective cardiac resynchronization therapy (CRT). We demonstrate a novel electrocardiographic methodology for quantifying electrical synchrony and optimizing SAVD/PAVD. METHODS: We studied 40 CRT patients with LV activation delay. Atrial-sensed to RV-sensed (As-RVs) and atrial-paced to RV-sensed (Ap-RVs) intervals were measured from intracardiac electrograms (IEGM). LV-only pacing was performed over a range of SAVD/PAVD settings. Electrical dyssynchrony (cardiac resynchronization index; CRI) was measured at each setting using a multilead ECG system placed over the anterior and posterior torso. Biventricular pacing, which included multiple interventricular delays, was also conducted in a subset of 10 patients. RESULTS: When paced LV-only, peak CRI was similar (93 ± 5% vs. 92 ± 5%) during atrial sensing or pacing but optimal PAVD was 61 ± 31 ms greater than optimal SAVD. The difference between As-RVs and Ap-RVs intervals on IEGMs (62 ± 31 ms) was nearly identical. The slope of the correlation line (0.98) and the correlation coefficient r (0.99) comparing the 2 methods of assessing SAVD-PAVD offset were nearly 1 and the y-intercept (0.63 ms) was near 0. During simultaneous biventricular (BiV) pacing at short AVD, SAVD and PAVD programming did not affect CRI, but CRI was significantly (p < .05) lower during atrial sensing at long AVD. CONCLUSIONS: A novel methodology for measuring electrical dyssynchrony was used to determine electrically optimal SAVD/PAVD during LV-only pacing. When BiV pacing, shorter AVDs produce better electrical synchrony.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Humanos , Terapia de Ressincronização Cardíaca/métodos , Resultado do Tratamento , Ventrículos do Coração , Dispositivos de Terapia de Ressincronização Cardíaca , Átrios do Coração , Eletrocardiografia/métodos , Insuficiência Cardíaca/terapia
2.
J Forensic Sci ; 68(5): 1570-1600, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565563

RESUMO

The need to detect fentanyl and its analogs in the field is an important capability to help prevent unintentional exposure or overdose on these substances, which may result in death. Many portable methods historically used in the field by first responders and other field users to detect and identify other chemical substances, such as hazardous materials, have been applied to the detection and identification of these synthetic opioids. This paper describes field portable spectroscopic methods used for the detection and identification of fentanyl and its analogs. The methods described are automated colorimetric tests including lateral flow assays; vibrational spectroscopy (mid-infrared and Raman); gas chromatography-mass spectrometry; ion mobility spectrometry, and high-pressure mass spectrometry. In each case the background and key details of these technologies are outlined, followed by a discussion of the application of the technology in the field. Attention is paid to the analysis of complex mixtures and limits of detection, including the required spectral databases and algorithms used to interrogate these types of samples. There is also an emphasis on providing actionable information to the (likely) non-scientist operators of these instruments in the field.


Assuntos
Overdose de Drogas , Fentanila , Humanos , Analgésicos Opioides/análise , Espectrometria de Massas , Cromatografia Gasosa-Espectrometria de Massas
3.
Commun Biol ; 6(1): 852, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587153

RESUMO

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play critical roles in human health. Prior genome-wide association studies (GWAS) of n-3 and n-6 PUFAs in European Americans from the CHARGE Consortium have documented strong genetic signals in/near the FADS locus on chromosome 11. We performed a GWAS of four n-3 and four n-6 PUFAs in Hispanic American (n = 1454) and African American (n = 2278) participants from three CHARGE cohorts. Applying a genome-wide significance threshold of P < 5 × 10-8, we confirmed association of the FADS signal and found evidence of two additional signals (in DAGLA and BEST1) within 200 kb of the originally reported FADS signal. Outside of the FADS region, we identified novel signals for arachidonic acid (AA) in Hispanic Americans located in/near genes including TMX2, SLC29A2, ANKRD13D and POLD4, and spanning a > 9 Mb region on chromosome 11 (57.5 Mb ~ 67.1 Mb). Among these novel signals, we found associations unique to Hispanic Americans, including rs28364240, a POLD4 missense variant for AA that is common in CHARGE Hispanic Americans but absent in other race/ancestry groups. Our study sheds light on the genetics of PUFAs and the value of investigating complex trait genetics across diverse ancestry populations.


Assuntos
Ácidos Graxos Ômega-6 , Estudo de Associação Genômica Ampla , Humanos , Negro ou Afro-Americano/genética , Genômica , Hispânico ou Latino/genética , Bestrofinas
4.
Circ Genom Precis Med ; 16(3): 248-257, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165871

RESUMO

BACKGROUND: Genome-wide association studies have identified hundreds of loci associated with lipid levels. However, the genetic mechanisms underlying most of these loci are not well-understood. Recent work indicates that changes in the abundance of alternatively spliced transcripts contribute to complex trait variation. Consequently, identifying genetic loci that associate with alternative splicing in disease-relevant cell types and determining the degree to which these loci are informative for lipid biology is of broad interest. METHODS: We analyze gene splicing in 83 sample-matched induced pluripotent stem cell (iPSC) and hepatocyte-like cell lines (n=166), as well as in an independent collection of primary liver tissues (n=96) to perform discovery of splicing quantitative trait loci (sQTLs). RESULTS: We observe that transcript splicing is highly cell type specific, and the genes that are differentially spliced between iPSCs and hepatocyte-like cells are enriched for metabolism pathway annotations. We identify 1384 hepatocyte-like cell sQTLs and 1455 iPSC sQTLs at a false discovery rate of <5% and find that sQTLs are often shared across cell types. To evaluate the contribution of sQTLs to variation in lipid levels, we conduct colocalization analysis using lipid genome-wide association data. We identify 19 lipid-associated loci that colocalize either with an hepatocyte-like cell expression quantitative trait locus or sQTL. Only 2 loci colocalize with both a sQTL and expression quantitative trait locus, indicating that sQTLs contribute information about genome-wide association studies loci that cannot be obtained by analysis of steady-state gene expression alone. CONCLUSIONS: These results provide an important foundation for future efforts that use iPSC and iPSC-derived cells to evaluate genetic mechanisms influencing both cardiovascular disease risk and complex traits in general.


Assuntos
Processamento Alternativo , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Splicing de RNA , Locos de Características Quantitativas , Lipídeos
5.
Genome Biol ; 24(1): 35, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829244

RESUMO

BACKGROUND: Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. RESULTS: We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. CONCLUSION: Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.


Assuntos
População da África Oriental , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico , Expressão Gênica , Tanzânia , Variação Genética
6.
Chembiochem ; 24(7): e202200669, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652345

RESUMO

PLP-dependent enzymes represent an important class of highly "druggable" enzymes that perform a wide array of critical reactions to support all organisms. Inhibition of individual members of this family of enzymes has been validated as a therapeutic target for pathologies ranging from infection with Mycobacterium tuberculosis to epilepsy. Given the broad nature of the activities within this family of enzymes, we envisioned a universally acting probe to characterize existing and putative members of the family that also includes the necessary chemical moieties to enable activity-based protein profiling experiments. Hence, we developed a probe that contains an N-hydroxyalanine warhead that acts as a covalent inhibitor of PLP-dependent enzymes, a linear diazirine for UV crosslinking, and an alkyne moiety to enable enrichment of crosslinked proteins. Our molecule was used to study PLP-dependent enzymes in vitro as well as look at whole-cell lysates of M. tuberculosis and assess inhibitory activity. The probe was able to enrich and identify LysA, a PLP-dependent enzyme crucial for lysine biosynthesis, through mass spectrometry. Overall, our study shows the utility of this trifunctional first-generation probe. We anticipate further optimization of probes for PLP-dependent enzymes will enable the characterization of rationally designed covalent inhibitors of PLP-dependent enzymes, which will expedite the preclinical characterization of these important therapeutic targets.


Assuntos
Fosfato de Piridoxal , Fosfato de Piridoxal/química , Modelos Moleculares , Espectrometria de Massas
7.
Microb Ecol ; 85(1): 335-339, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35059821

RESUMO

Microbial symbionts enable many phytophagous insects to specialize on plant-based diets through a range of metabolic services. Pollen comprises one-plant tissue consumed by such herbivores. While rich in lipids and proteins, its nutrient content is often imbalanced and difficult-to-access due to a digestibly recalcitrant cell wall. Pollen quality can be further degraded by harmful allelochemicals. To identify microbes that may aid in palynivory, we performed cDNA-based 16S rRNA metabarcoding on three related pollen beetles (Nitidulidae: Meligethinae) exhibiting different dietary breadths: Brassicogethes aeneus, B. matronalis, and Meligethes atratus. Nine bacterial symbionts (i.e., 97% OTUs) exhibited high metabolic activity during active feeding. Subsequent PCR surveys revealed varying prevalence of those from three Rickettsialles genera-Lariskella, Rickettsia, and Wolbachia-within beetle populations. Our findings lay the groundwork for future studies on the influence of phylogeny and diet on palynivorous insect microbiomes, and roles of symbionts in the use of challenging diets.


Assuntos
Besouros , Animais , RNA Ribossômico 16S/genética , Insetos , Pólen , Plantas
8.
J Electrocardiol ; 74: 73-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36055070

RESUMO

PURPOSE: There is no clinical methodology for quantification or display of electrical dyssynchrony over a wide range of atrial-ventricular delays (AVD) and ventricular-ventricular delays (VVD) in patients with cardiac resynchronization therapy (CRT). This study aimed to develop a new methodology, based on wavefront fusion, for mapping electrical synchrony. METHODS: A cardiac resynchronization index (CRI) was measured at multiple device settings in 90 patients. Electrical dyssynchrony maps (EDM) were constructed for each patient to display CRI at any combination of AVD and VVD. An optimal synchrony line (OSL) depicted the AVD/VVD combinations producing the highest CRIs. Fusion of right ventricular paced (RVp), left ventricular paced (LVp), and native wavefront offsets were calculated. RESULTS: CRI significantly increased (p < 0.0001) from 58.0 ± 28.1% at baseline to 98.3 ± 1.7% at optimized settings. EDMs in patients with high-grade heart block (n = 20) had an OSL parallel to the simultaneous biventricular pacing (BiVPVV-SIM) line with leftward shift across all AVDs (RVp-LVpOFFSET = 50.5 ± 29.8 ms). EDMs in patients with intact AV node conduction (n = 64) had an OSL parallel to the BiVPVV-SIM line with leftward shift at short AVDs (RVp-LVpOFFSET = 33.4 ± 23.3 ms), curvilinear at intermediate AVDs (triple fusion), and vertical at long AVDs (native-LVpOFFSET = 85.2 ± 22.8 ms) in all patients except those with poor LV lead position (n = 6). CONCLUSION: A new methodology is described for quantifying and graphing electrical dyssynchrony over a physiologic range of AVDs/VVDs. This methodology offers a noninvasive, practical, clinical approach for measuring electrical synchrony that could be applied to optimization of CRT devices.


Assuntos
Terapia de Ressincronização Cardíaca , Humanos , Eletrocardiografia
9.
Heart Rhythm ; 19(12): 1965-1973, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35940458

RESUMO

BACKGROUND: Nonresponse to cardiac resynchronization therapy (CRT) occurs in ∼30%-50% of patients. There are no well-accepted clinical approaches for optimizing CRT in nonresponders. OBJECTIVE: The purpose of this study was to demonstrate the effect of CRT optimization using electrical dyssynchrony mapping on left ventricular (LV) function, size, and dyssynchrony in selected patients with nonresponse/incomplete response to CRT. METHODS: We studied 39 patients with underlying left bundle branch block or interventricular conduction delay who had an LV ejection fraction of ≤40% after receiving CRT and had significant electrical dyssynchrony. Electrical dyssynchrony was measured at multiple atrioventricular delays and interventricular delays. The QRS area between combinations of 9 anterior and 9 posterior electrograms (QRS area under the curve) was calculated, and cardiac resynchronization index (CRI) was defined as the percent change in QRS area under the curve compared to native conduction. Electrical dyssynchrony maps depicted CRI over the wide range of settings tested. Patients were programmed to an optimal device setting, and echocardiograms were recorded 5.9 ± 3.7 months postoptimization. RESULTS: CRI increased from 49.4% ± 24.0% to 90.8% ± 10.5%. CRT optimization significantly improved LV ejection fraction from 31.8% ± 4.7% to 36.3% ± 5.9% (P < .001) and LV end-systolic volume from 108.5 ± 37.6 to 98.0 ± 37.5 mL (P = .009). Speckle-tracking measures of LV strain significantly improved by 2.4% ± 4.5% (transverse; P = .002) and 1.0% ± 2.6% (longitudinal; P = .017). Aortic to pulmonic valve opening time, a measure of interventricular dyssynchrony, significantly (P = .040) decreased by 14.9 ± 39.4 ms. CONCLUSION: CRT optimization of electrical dyssynchrony using a novel electrical dyssynchrony mapping technology significantly improves LV systolic function, LV end-systolic volume, and mechanical dyssynchrony. This methodology offers a noninvasive, practical clinical approach to treating nonresponders and incomplete responders to CRT.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Terapia de Ressincronização Cardíaca/métodos , Insuficiência Cardíaca/terapia , Resultado do Tratamento , Volume Sistólico , Função Ventricular Esquerda
10.
Nat Genet ; 54(7): 950-962, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710981

RESUMO

More than 800 million people suffer from kidney disease, yet the mechanism of kidney dysfunction is poorly understood. In the present study, we define the genetic association with kidney function in 1.5 million individuals and identify 878 (126 new) loci. We map the genotype effect on the methylome in 443 kidneys, transcriptome in 686 samples and single-cell open chromatin in 57,229 kidney cells. Heritability analysis reveals that methylation variation explains a larger fraction of heritability than gene expression. We present a multi-stage prioritization strategy and prioritize target genes for 87% of kidney function loci. We highlight key roles of proximal tubules and metabolism in kidney function regulation. Furthermore, the causal role of SLC47A1 in kidney disease is defined in mice with genetic loss of Slc47a1 and in human individuals carrying loss-of-function variants. Our findings emphasize the key role of bulk and single-cell epigenomic information in translating genome-wide association studies into identifying causal genes, cellular origins and mechanisms of complex traits.


Assuntos
Epigenômica , Nefropatias , Animais , Estudo de Associação Genômica Ampla , Humanos , Nefropatias/genética , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
11.
J Electrocardiol ; 72: 72-78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35344747

RESUMO

AIMS: Cardiac resynchronization therapy (CRT) response is proportional to QRS duration (QRSd). We hypothesize that this is, in part, due to slower conduction velocity and hence wider range of programmed device settings that produce adequate electrical wavefront fusion and resynchronization in wider QRSd patients. METHODS: CRT patients (n = 122) with left ventricular (LV) conduction delay, sinus rhythm and intact atrioventricular node conduction were studied. Patients were categorized by QRSd: narrow (<120 ms; n = 20); moderate (120-150 ms, n = 37); and prolonged (≥150 ms; n = 65). Electrocardiographic data was acquired during native rhythm and LV-only pacing at varying atrioventricular delays (AVDs). Electrical synchrony was quantified as cardiac resynchronization index (CRI) using multi­lead electrocardiographic systems and a proprietary algorithm that quantified wavefront fusion. A Gaussian distribution equation was fitted to CRI response. RESULTS: Peak CRI was high (87.6 ± 6.3%) and similar (p = 0.716) across QRSd groups. The standard deviation of the Gaussian distribution significantly correlated with QRSd (R = 0.614, p < 0.001), and progressively and significantly (p < 0.001) increased as QRSd increased from narrow (34.8 ± 10.0 ms), to moderate (50.6 ± 8.4 ms), to prolonged (67.6 ± 18.3 ms). At AVDs 20 and 40 ms from optimal, CRI differed significantly (p < 0.001) between groups, with progressively higher CRI values as native QRSd increased. CONCLUSION: Electrical resynchronization with optimally programmed LV-only pacing was similar between patients with varying QRSd, including patients with narrow QRSd. The resynchronization window that corresponded with optimal electrical resynchronization decreased as native QRSd decreased. This finding provides one potential explanation for the lack of significant benefit of CRT in narrow QRSd patients in previous studies.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Nó Atrioventricular , Eletrocardiografia , Insuficiência Cardíaca/terapia , Frequência Cardíaca , Humanos , Resultado do Tratamento
12.
Alzheimers Dement ; 18(10): 1930-1942, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34978147

RESUMO

We previously demonstrated that in Alzheimer's disease (AD) patients, European apolipoprotein E (APOE) ε4 carriers express significantly more APOE ε4 in their brains than African AD carriers. We examined single nucleotide polymorphisms near APOE with significant frequency differences between African and European/Japanese APOE ε4 haplotypes that could contribute to this difference in expression through regulation. Two enhancer massively parallel reporter assay (MPRA) approaches were performed, supplemented with single fragment reporter assays. We used Capture C analyses to support interactions with the APOE promoter. Introns within TOMM40 showed increased enhancer activity in the European/Japanese versus African haplotypes in astrocytes and microglia. This region overlaps with APOE promoter interactions as assessed by Capture C analysis. Single variant analyses pinpoints rs2075650/rs157581, and rs59007384 as functionally different on these haplotypes. Identification of the mechanisms for differential regulatory function for APOE expression between African and European/Japanese haplotypes could lead to therapeutic targets for APOE ε4 carriers.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Alelos , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , População Negra/genética , Genótipo , Haplótipos , Polimorfismo de Nucleotídeo Único/genética
13.
Sci Transl Med ; 13(621): eabg2612, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34818059

RESUMO

"Viable but nonculturable" states of bacteria pose challenges for environmental and clinical microbiology, but their biological mechanisms remain obscure. Mycobacterium tuberculosis (Mtb), the leading cause of death from infection until the coronavirus disease 2019 pandemic, affords a notable example of this phenotype. Mtb can enter into a "differentially detectable" (DD) state associated with phenotypic antimicrobial resistance. In this state, Mtb cells are viable but undetectable as colony-forming units. We found that Mtb cells enter the DD state when they undergo sublethal oxidative stress that damages their DNA, proteins, and lipids. In addition, their replication process is delayed, allowing time for repair. Mycobacterium bovis and its derivative, BCG, fail to enter the DD state under similar conditions. These findings have implications for tuberculosis latency, detection, relapse, treatment monitoring, and development of regimens that overcome phenotypic antimicrobial resistance.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Estresse Oxidativo , SARS-CoV-2 , Tuberculose/metabolismo
14.
Nat Genet ; 53(9): 1322-1333, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34385711

RESUMO

The functional interpretation of genome-wide association studies (GWAS) is challenging due to the cell-type-dependent influences of genetic variants. Here, we generated comprehensive maps of expression quantitative trait loci (eQTLs) for 659 microdissected human kidney samples and identified cell-type-eQTLs by mapping interactions between cell type abundances and genotypes. By partitioning heritability using stratified linkage disequilibrium score regression to integrate GWAS with single-cell RNA sequencing and single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing data, we prioritized proximal tubules for kidney function and endothelial cells and distal tubule segments for blood pressure pathogenesis. Bayesian colocalization analysis nominated more than 200 genes for kidney function and hypertension. Our study clarifies the mechanism of commonly used antihypertensive and renal-protective drugs and identifies drug repurposing opportunities for kidney disease.


Assuntos
Hipertensão/genética , Túbulos Renais Distais/patologia , Túbulos Renais Proximais/patologia , Locos de Características Quantitativas/genética , Insuficiência Renal Crônica/genética , Sequência de Bases , Mapeamento Cromossômico , Células Endoteliais/patologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Insuficiência Renal Crônica/patologia , Análise de Sequência de RNA , Análise de Célula Única
15.
Nat Commun ; 12(1): 4487, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301922

RESUMO

Testicular germ cell tumors (TGCT) are the most common tumor in young white men and have a high heritability. In this study, the international Testicular Cancer Consortium assemble 10,156 and 179,683 men with and without TGCT, respectively, for a genome-wide association study. This meta-analysis identifies 22 TGCT susceptibility loci, bringing the total to 78, which account for 44% of disease heritability. Men with a polygenic risk score (PRS) in the 95th percentile have a 6.8-fold increased risk of TGCT compared to men with median scores. Among men with independent TGCT risk factors such as cryptorchidism, the PRS may guide screening decisions with the goal of reducing treatment-related complications causing long-term morbidity in survivors. These findings emphasize the interconnected nature of two known pathways that promote TGCT susceptibility: male germ cell development within its somatic niche and regulation of chromosomal division and structure, and implicate an additional biological pathway, mRNA translation.


Assuntos
Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias Embrionárias de Células Germinativas/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Testiculares/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico , Redes Reguladoras de Genes/genética , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Metanálise como Assunto , Neoplasias Embrionárias de Células Germinativas/metabolismo , Mapas de Interação de Proteínas/genética , Neoplasias Testiculares/metabolismo
16.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33998598

RESUMO

Genome-wide association studies (GWAS) for kidney function identified hundreds of risk regions; however, the causal variants, target genes, cell types, and disease mechanisms remain poorly understood. Here, we performed transcriptome-wide association studies (TWAS), summary Mendelian randomization, and MetaXcan to identify genes whose expression mediates the genotype effect on the phenotype. Our analyses identified Dachshund homolog 1 (DACH1), a cell-fate determination factor. GWAS risk variant was associated with lower DACH1 expression in human kidney tubules. Human and mouse kidney single-cell open chromatin data (snATAC-Seq) prioritized estimated glomerular filtration rate (eGFR) GWAS variants located on an intronic regulatory region in distal convoluted tubule cells. CRISPR-Cas9-mediated gene editing confirmed the role of risk variants in regulating DACH1 expression. Mice with tubule-specific Dach1 deletion developed more severe renal fibrosis both in folic acid and diabetic kidney injury models. Mice with tubule-specific Dach1 overexpression were protected from folic acid nephropathy. Single-cell RNA sequencing, chromatin immunoprecipitation, and functional analysis indicated that DACH1 controls the expression of cell cycle and myeloid chemotactic factors, contributing to macrophage infiltration and fibrosis development. In summary, integration of GWAS, TWAS, single-cell epigenome, expression analyses, gene editing, and functional validation in different mouse kidney disease models identified DACH1 as a kidney disease risk gene.


Assuntos
Bases de Dados de Ácidos Nucleicos , Proteínas do Olho , Nefropatias , Túbulos Renais/metabolismo , Fatores de Transcrição , Transcriptoma , Animais , Modelos Animais de Doenças , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Estudo de Associação Genômica Ampla , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Risco , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
17.
Hepatology ; 74(4): 1825-1844, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33901295

RESUMO

BACKGROUND AND AIMS: NASH will soon become the leading cause of liver transplantation in the United States and is also associated with increased COVID-19 mortality. Currently, there are no Food and Drug Administration-approved drugs available that slow NASH progression or address NASH liver involvement in COVID-19. Because animal models cannot fully recapitulate human NASH, we hypothesized that stem cells isolated directly from end-stage liver from patients with NASH may address current knowledge gaps in human NASH pathology. APPROACH AND RESULTS: We devised methods that allow the derivation, proliferation, hepatic differentiation, and extensive characterization of bipotent ductal organoids from irreversibly damaged liver from patients with NASH. The transcriptomes of organoids derived from NASH liver, but not healthy liver, show significant up-regulation of proinflammatory and cytochrome p450-related pathways, as well as of known liver fibrosis and tumor markers, with the degree of up-regulation being patient-specific. Functionally, NASH liver organoids exhibit reduced passaging/growth capacity and hallmarks of NASH liver, including decreased albumin production, increased free fatty acid-induced lipid accumulation, increased sensitivity to apoptotic stimuli, and increased cytochrome P450 metabolism. After hepatic differentiation, NASH liver organoids exhibit reduced ability to dedifferentiate back to the biliary state, consistent with the known reduced regenerative ability of NASH livers. Intriguingly, NASH liver organoids also show strongly increased permissiveness to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vesicular stomatitis pseudovirus as well as up-regulation of ubiquitin D, a known inhibitor of the antiviral interferon host response. CONCLUSION: Expansion of primary liver stem cells/organoids derived directly from irreversibly damaged liver from patients with NASH opens up experimental avenues for personalized disease modeling and drug development that has the potential to slow human NASH progression and to counteract NASH-related SARS-CoV-2 effects.


Assuntos
Doença Hepática Terminal/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Organoides/metabolismo , Adulto , Idoso , Biópsia , COVID-19/complicações , COVID-19/virologia , Diferenciação Celular/imunologia , Doença Hepática Terminal/imunologia , Feminino , Perfilação da Expressão Gênica , Voluntários Saudáveis , Hepatócitos/imunologia , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/citologia , Fígado/imunologia , Regeneração Hepática , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/virologia , Organoides/imunologia , SARS-CoV-2/imunologia , Regulação para Cima/imunologia
18.
Cell ; 184(10): 2633-2648.e19, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33864768

RESUMO

Long non-coding RNA (lncRNA) genes have well-established and important impacts on molecular and cellular functions. However, among the thousands of lncRNA genes, it is still a major challenge to identify the subset with disease or trait relevance. To systematically characterize these lncRNA genes, we used Genotype Tissue Expression (GTEx) project v8 genetic and multi-tissue transcriptomic data to profile the expression, genetic regulation, cellular contexts, and trait associations of 14,100 lncRNA genes across 49 tissues for 101 distinct complex genetic traits. Using these approaches, we identified 1,432 lncRNA gene-trait associations, 800 of which were not explained by stronger effects of neighboring protein-coding genes. This included associations between lncRNA quantitative trait loci and inflammatory bowel disease, type 1 and type 2 diabetes, and coronary artery disease, as well as rare variant associations to body mass index.


Assuntos
Doença/genética , Herança Multifatorial/genética , População/genética , RNA Longo não Codificante/genética , Transcriptoma , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica , Variação Genética , Humanos , Doenças Inflamatórias Intestinais/genética , Especificidade de Órgãos/genética , Locos de Características Quantitativas
19.
Biophys J ; 120(11): 2138-2147, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861996

RESUMO

We have characterized the imbibed horizontal flow of sickle blood into 100-µm-diameter glass capillaries. We find that blood containing sickled cells typically traverses the capillaries between three and four times as slowly as oxygenated cells from the same patient for all genotypes tested, including SS, AS, SC and Sß+ thalassemia blood. Blood from SS patients treated with hydroxyurea has a viscosity intermediate between the SS and AA values. Blood containing cells that are not rigidified, such as normal red cells or oxygenated sickle cells, follows a simple Lucas-Washburn flow throughout the length of the 3-cm capillary. By fitting the flexible-cell data to the Lucas-Washburn model, a viscosity can be derived that is in good agreement with previous measurements over a range of volume fractions and is obtained using an apparatus that is far more complex. Deoxygenation sickles and thus rigidifies the cells, and their flow begins as Lucas-Washburn, albeit with higher viscosity than flexible cells. However, the flow further slows as a dense mass of cells forms behind the meniscus and increases in length as flow progresses. By assuming that the dense mass of cells exerts a frictional force proportional to its length, we derive an equation that is formally equivalent to vertical imbibition, even though the flow is horizontal, and this equation reproduces the observed behavior well. We present a simple theory using activity coefficients that accounts for this viscosity and its variation without adjustable parameters. In the course of control experiments, we have found that deoxygenation increases the flexibility of normal human red cells, an observation only recently published for mouse cells and previously unreported for human erythrocytes. Together, these studies form the foundation for an inexpensive and rapid point-of-care device to diagnose sickle cell disease or to determine blood viscosity in resource-challenged settings.


Assuntos
Anemia Falciforme , Capilares , Anemia Falciforme/tratamento farmacológico , Animais , Viscosidade Sanguínea , Eritrócitos , Eritrócitos Anormais , Humanos , Camundongos , Oxigênio
20.
Am J Hum Genet ; 108(4): 549-563, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798443

RESUMO

Genome-wide association studies (GWASs) have enabled unbiased identification of genetic loci contributing to common complex diseases. Because GWAS loci often harbor many variants and genes, it remains a major challenge to move from GWASs' statistical associations to the identification of causal variants and genes that underlie these association signals. Researchers have applied many statistical and functional fine-mapping strategies to prioritize genetic variants and genes as potential candidates. There is no gold standard in fine-mapping approaches, but consistent results across different approaches can improve confidence in the fine-mapping findings. Here, we combined text mining with a systematic review and formed a catalog of 85 studies with evidence of fine mapping for at least one autoimmune GWAS locus. Across all fine-mapping studies, we compiled 230 GWAS loci with allelic heterogeneity estimates and predictions of causal variants and trait-relevant genes. These 230 loci included 455 combinations of locus-by-disease association signals with 15 autoimmune diseases. Using these estimates, we assessed the probability of mediating disease risk associations across genes in GWAS loci and identified robust signals of causal disease biology. We predict that this comprehensive catalog of GWAS fine-mapping efforts in autoimmune disease will greatly help distill the plethora of information in the field and inform therapeutic strategies.


Assuntos
Doenças Autoimunes/genética , Estudo de Associação Genômica Ampla , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...