Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Fungal Biol ; 127(3): 918-926, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36906382

RESUMO

The disaccharide trehalose has long been recognized for its role as a stress solute, but in recent years some of the protective effects previously ascribed to trehalose have been suggested to arise from a function of the trehalose biosynthesis enzyme trehalose-6-phosphate (T6P) synthase that is distinct from its catalytic activity. In this study, we use the maize pathogenic fungus Fusarium verticillioides as a model to explore the relative contributions of trehalose itself and a putative secondary function of T6P synthase in protection against stress as well as to understand why, as shown in a previous study, deletion of the TPS1 gene coding for T6P synthase reduces pathogenicity against maize. We report that a TPS1-deletion mutant of F. verticillioides is compromised in its ability to withstand exposure to oxidative stress meant to simulate the oxidative burst phase of maize defense and experiences more ROS-induced lipid damage than the wild-type strain. Eliminating T6P synthase expression also reduces resistance to desiccation, but not resistance to phenolic acids. Expression of catalytically-inactive T6P synthase in the TPS1-deletion mutant leads to a partial rescue of the oxidative and desiccation stress-sensitive phenotypes, suggesting the importance of a T6P synthase function that is independent of its role in trehalose synthesis.


Assuntos
Dessecação , Trealose , Trealose/metabolismo , Estresse Oxidativo
3.
Fungal Genet Biol ; 163: 103749, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36341840

RESUMO

The Fusarium verticillioides SKC1 gene driver is transmitted to offspring in a biased manner through spore killing. The mechanism that allows SKC1 to kill non-SKC1 offspring while sparing others is poorly understood. Here we report that gene drive by SKC1 is dependent on SKC1's competing allele. We propose that SKC1's competing allele influences the ability of a genome defense process to detect SKC1, and we provide evidence that this genome defense process is meiotic silencing by unpaired DNA (MSUD). Our findings suggest that the successful deployment of gene drivers to control pathogenic fungi will require researchers to consider how competing alleles influence the ability of gene drivers to be detected by genome defense processes.


Assuntos
Fusarium , Tecnologia de Impulso Genético , Fusarium/genética , Alelos , Meiose
4.
Appl Microbiol Biotechnol ; 106(21): 7153-7171, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36166052

RESUMO

The fungus Trichoderma arundinaceum exhibits biological control activity against crop diseases caused by other fungi. Two mechanisms that likely contribute to this activity are upregulation of plant defenses and production of two types of antifungal secondary metabolites: the sesquiterpenoid harzianum A (HA) and the polyketide-derived aspinolides. The goal of the current study was to identify aspinolide biosynthetic genes as part of an effort to understand how these metabolites contribute to the biological control activity of T. arundinaceum. Comparative genomics identified two polyketide synthase genes (asp1 and asp2) that occur in T. arundinaceum and Aspergillus ochraceus, which also produces aspinolides. Gene deletion and biochemical analyses in T. arundinaceum indicated that both genes are required for aspinolide production: asp2 for formation of a 10-member lactone ring and asp1 for formation of a butenoyl subsituent at position 8 of the lactone ring. Gene expression and comparative genomics analyses indicated that asp1 and asp2 are located within a gene cluster that occurs in both T. arundinaceum and A. ochraceus. A survey of genome sequences representing 35 phylogenetically diverse Trichoderma species revealed that intact homologs of the cluster occurred in only two other species, which also produced aspinolides. An asp2 mutant inhibited fungal growth more than the wild type, but an asp1 mutant did not, and the greater inhibition by the asp2 mutant coincided with increased HA production. These findings indicate that asp1 and asp2 are aspinolide biosynthetic genes and that loss of either aspinolide or HA production in T. arundinaceum can be accompanied by increased production of the other metabolite(s). KEY POINTS: • Two polyketide synthase genes are required for aspinolide biosynthesis. • Blocking aspinolide production increases production of the terpenoid harzianum A. • Aspinolides and harzianum A act redundantly in antibiosis of T. arundinaceum.


Assuntos
Policetídeos , Sesquiterpenos , Trichoderma , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Regulação Fúngica da Expressão Gênica , Antifúngicos/metabolismo , Trichoderma/metabolismo , Terpenos/metabolismo , Sesquiterpenos/metabolismo , Lactonas/metabolismo , Policetídeos/metabolismo
5.
Fungal Genet Biol ; 160: 103696, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470043

RESUMO

The genus Fusarium includes pathogens of global concern to animal and plant health. Natural products (NPs) synthesized by Fusarium can contribute to pathogenesis or competitiveness of the fungus in the environment and to animal diseases, including cancer and neural tube defects. Polyketide synthases (PKSs) are a family of large, multi-domain enzymes that are required for synthesis of most fungal NPs. To gain insight into the NP potential of Fusarium, we retrieved 2974 PKS gene sequences from the genomes of 206 Fusarium species. Phylogenetic analysis resolved these PKSs, along with 118 previously described PKSs from other fungi, into 123 clades. Based on results from previous studies, we propose that PKSs in the same clade generally synthesize the same polyketide, which is structurally distinct from polyketides synthesized by PKSs in other clades. We predict that the 123 clades potentially produce 113 structurally distinct families of polyketide-derived NPs because some NPs (e.g., zearalenone) require two PKSs for their synthesis. Collectively, the clades include PKSs required for synthesis of six NPs whose production has not previously been reported in Fusarium, including two NPs with significant pharmaceutical interest: chaetoviridin and a statin. Our results highlight the NP diversity of Fusarium and the potential of the genus to produce metabolites with medical and other applications.


Assuntos
Produtos Biológicos , Fusarium , Policetídeos , Animais , Produtos Biológicos/metabolismo , Filogenia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
6.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35166849

RESUMO

Spore killers are meiotic drive elements that can block the development of sexual spores in fungi. In the maize ear rot and mycotoxin-producing fungus Fusarium verticillioides, a spore killer called SkK has been mapped to a 102-kb interval of chromosome V. Here, we show that a gene within this interval, SKC1, is required for SkK-mediated spore killing and meiotic drive. We also demonstrate that SKC1 is associated with at least 4 transcripts, 2 sense (sense-SKC1a and sense-SKC1b) and 2 antisense (antisense-SKC1a and antisense-SKC1b). Both antisense SKC1 transcripts lack obvious protein-coding sequences and thus appear to be noncoding RNAs. In contrast, sense-SKC1a is a protein-coding transcript that undergoes A-to-I editing to sense-SKC1b in sexual tissue. Translation of sense-SKC1a produces a 70-amino-acid protein (Skc1a), whereas the translation of sense-SKC1b produces an 84-amino-acid protein (Skc1b). Heterologous expression analysis of SKC1 transcripts shows that sense-SKC1a also undergoes A-to-I editing to sense-SKC1b during the Neurospora crassa sexual cycle. Site-directed mutagenesis studies indicate that Skc1b is responsible for spore killing in Fusarium verticillioides and that it induces most meiotic cells to die in Neurospora crassa. Finally, we report that SKC1 homologs are present in over 20 Fusarium species. Overall, our results demonstrate that fungal meiotic drive elements like SKC1 can influence the outcome of meiosis by hijacking a cell's A-to-I editing machinery and that the involvement of A-to-I editing in a fungal meiotic drive system does not preclude its horizontal transfer to a distantly related species.


Assuntos
Fusarium , Neurospora crassa , Fusarium/genética , Genes Fúngicos , Meiose/genética , Neurospora crassa/genética , RNA Mensageiro , Esporos Fúngicos/genética
7.
Plant Dis ; 106(6): 1597-1609, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34907805

RESUMO

Accurate species-level identification of an etiological agent is crucial for disease diagnosis and management because knowing the agent's identity connects it with what is known about its host range, geographic distribution, and toxin production potential. This is particularly true in publishing peer-reviewed disease reports, where imprecise and/or incorrect identifications weaken the public knowledge base. This can be a daunting task for phytopathologists and other applied biologists that need to identify Fusarium in particular, because published and ongoing multilocus molecular systematic studies have highlighted several confounding issues. Paramount among these are: (i) this agriculturally and clinically important genus is currently estimated to comprise more than 400 phylogenetically distinct species (i.e., phylospecies), with more than 80% of these discovered within the past 25 years; (ii) approximately one-third of the phylospecies have not been formally described; (iii) morphology alone is inadequate to distinguish most of these species from one another; and (iv) the current rapid discovery of novel fusaria from pathogen surveys and accompanying impact on the taxonomic landscape is expected to continue well into the foreseeable future. To address the critical need for accurate pathogen identification, our research groups are focused on populating two web-accessible databases (FUSARIUM-ID v.3.0 and the nonredundant National Center for Biotechnology Information nucleotide collection that includes GenBank) with portions of three phylogenetically informative genes (i.e., TEF1, RPB1, and RPB2) that resolve at or near the species level in every Fusarium species. The objectives of this Special Report, and its companion in this issue (Torres-Cruz et al. 2022), are to provide a progress report on our efforts to populate these databases and to outline a set of best practices for DNA sequence-based identification of fusaria.


Assuntos
Fusarium , Sequência de Bases , Fusarium/genética , Filogenia
8.
Plant Dis ; 106(6): 1610-1616, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34879732

RESUMO

Species within Fusarium are of global agricultural, medical, and food/feed safety concern and have been extensively characterized. However, accurate identification of species is challenging and usually requires DNA sequence data. FUSARIUM-ID (http://isolate.fusariumdb.org/blast.php) is a publicly available database designed to support the identification of Fusarium species using sequences of multiple phylogenetically informative loci, especially the highly informative ∼680-bp 5' portion of the translation elongation factor 1-alpha (TEF1) gene that has been adopted as the primary barcoding locus in the genus. However, FUSARIUM-ID v.1.0 and 2.0 had several limitations, including inconsistent metadata annotation for the archived sequences and poor representation of some species complexes and marker loci. Here, we present FUSARIUM-ID v.3.0, which provides the following improvements: (i) additional and updated annotation of metadata for isolates associated with each sequence, (ii) expanded taxon representation in the TEF1 sequence database, (iii) availability of the sequence database as a downloadable file to enable local BLAST queries, and (iv) a tutorial file for users to perform local BLAST searches using either freely available software, such as SequenceServer, BLAST+ executable in the command line, and Galaxy, or the proprietary Geneious software. FUSARIUM-ID will be updated on a regular basis by archiving sequences of TEF1 and other loci from newly identified species and greater in-depth sampling of currently recognized species.


Assuntos
Fusarium , DNA Fúngico/genética , Fusarium/genética , Filogenia
9.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670954

RESUMO

Fusarium verticillioides causes multiple diseases of Zea mays (maize) including ear and seedling rots, contaminates seeds and seed products worldwide with toxic chemicals called fumonisins. The role of fumonisins in disease is unclear because, although they are not required for ear rot, they are required for seedling diseases. Disease symptoms may be due to the ability of fumonisins to inhibit ceramide synthase activity, the expected cause of lipids (fatty acids, oxylipins, and sphingolipids) alteration in infected plants. In this study, we explored the impact of fumonisins on fatty acid, oxylipin, and sphingolipid levels in planta and how these changes affect F. verticillioides growth in maize. The identity and levels of principal fatty acids, oxylipins, and over 50 sphingolipids were evaluated by chromatography followed by mass spectrometry in maize infected with an F. verticillioides fumonisin-producing wild-type strain and a fumonisin-deficient mutant, after different periods of growth. Plant hormones associated with defense responses, i.e., salicylic and jasmonic acid, were also evaluated. We suggest that fumonisins produced by F. verticillioides alter maize lipid metabolism, which help switch fungal growth from a relatively harmless endophyte to a destructive necrotroph.


Assuntos
Fumonisinas/toxicidade , Fusarium/química , Germinação , Metabolismo dos Lipídeos/efeitos dos fármacos , Micoses/metabolismo , Doenças das Plantas/microbiologia , Zea mays/efeitos dos fármacos , Ciclopentanos/análise , Ciclopentanos/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Fumonisinas/farmacologia , Micotoxinas/toxicidade , Oxilipinas/análise , Oxilipinas/metabolismo , Ácido Salicílico/análise , Ácido Salicílico/metabolismo , Esfingolipídeos/análise , Esfingolipídeos/metabolismo , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
10.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33200960

RESUMO

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Assuntos
Fusarium , Fusarium/genética , Filogenia , Doenças das Plantas , Plantas
12.
BMC Genomics ; 21(1): 510, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703172

RESUMO

BACKGROUND: Sphingolipids are structural components and signaling molecules in eukaryotic membranes, and many organisms produce compounds that inhibit sphingolipid metabolism. Some of the inhibitors are structurally similar to the sphingolipid biosynthetic intermediate sphinganine and are referred to as sphinganine-analog metabolites (SAMs). The mycotoxins fumonisins, which are frequent contaminants in maize, are one family of SAMs. Due to food and feed safety concerns, fumonisin biosynthesis has been investigated extensively, including characterization of the fumonisin biosynthetic gene cluster in the agriculturally important fungi Aspergillus and Fusarium. Production of several other SAMs has also been reported in fungi, but there is almost no information on their biosynthesis. There is also little information on how widely SAM production occurs in fungi or on the extent of structural variation of fungal SAMs. RESULTS: Using fumonisin biosynthesis as a model, we predicted that SAM biosynthetic gene clusters in fungi should include a polyketide synthase (PKS), an aminotransferase and a dehydrogenase gene. Surveys of genome sequences identified five putative clusters with this three-gene combination in 92 of 186 Fusarium species examined. Collectively, the putative SAM clusters were distributed widely but discontinuously among the species. We propose that the SAM5 cluster confers production of a previously reported Fusarium SAM, 2-amino-14,16-dimethyloctadecan-3-ol (AOD), based on the occurrence of AOD production only in species with the cluster and on deletion analysis of the SAM5 cluster PKS gene. We also identified SAM clusters in 24 species of other fungal genera, and propose that one of the clusters confers production of sphingofungin, a previously reported Aspergillus SAM. CONCLUSION: Our results provide a genomics approach to identify novel SAM biosynthetic gene clusters in fungi, which should in turn contribute to identification of novel SAMs with applications in medicine and other fields. Information about novel SAMs could also provide insights into the role of SAMs in the ecology of fungi. Such insights have potential to contribute to strategies to reduce fumonisin contamination in crops and to control crop diseases caused by SAM-producing fungi.


Assuntos
Fumonisinas , Fusarium , Fungos , Fusarium/genética , Família Multigênica , Esfingolipídeos
13.
Fungal Genet Biol ; 136: 103317, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31841670

RESUMO

Trichothecenes are among the mycotoxins of most concern to food and feed safety and are produced by species in two lineages of Fusarium: the F. incarnatum-equiseti (FIESC) and F. sambucinum (FSAMSC) species complexes. Previous functional analyses of the trichothecene biosynthetic gene (TRI) cluster in members of FSAMSC indicate that the transcription factor gene TRI6 activates expression of other TRI cluster genes. In addition, previous sequence analyses indicate that the FIESC TRI cluster includes TRI6 and another uncharacterized transcription factor gene (hereafter TRI21) that was not reported in FSAMSC. Here, gene deletion analysisindicated that in FIESC TRI6 functions in a manner similar to FSAMSC, whereas TRI21 activated expression of some genes that function late in the trichothecene biosynthetic pathway but not early-pathway genes. Consistent with this finding, TRI21 was required for formation of diacetoxyscripenol, a late-trichothecene-pathway product, but not for isotrichodermin, an early-pathway product. Although intact homologs of TRI21 were not detected in FSAMSC or other trichothecene-producing fungal genera, TRI21 fragments were detected in some FSAMSC species. This suggests that the gene was acquired by Fusarium after divergence from other trichothecene-producing fungi, was subsequently lost in FSAMSC, but was retained in FIESC. Together, our results indicate fundamental differences in regulation of trichothecene biosynthesis in FIESC and FSAMSC.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/metabolismo , Fatores de Transcrição/genética , Tricotecenos/metabolismo , Vias Biossintéticas/genética , DNA Fúngico , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Teste de Complementação Genética , Família Multigênica , Filogenia , Deleção de Sequência
14.
BMC Genomics ; 20(1): 314, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31014248

RESUMO

BACKGROUND: The Fusarium incarnatum-equiseti species complex (FIESC) comprises 33 phylogenetically distinct species that have been recovered from diverse biological sources, but have been most often isolated from agricultural plants and soils. Collectively, members of FIESC can produce diverse mycotoxins. However, because the species diversity of FIESC has been recognized only recently, the potential of species to cause mycotoxin contamination of crop plants is unclear. In this study, therefore, we used comparative genomics to investigate the distribution of and variation in genes and gene clusters responsible for the synthesis of mycotoxins and other secondary metabolites (SMs) in FIESC. RESULTS: We examined genomes of 13 members of FIESC that were selected based primarily on their phylogenetic diversity and/or occurrence on crops. The presence and absence of SM biosynthetic gene clusters varied markedly among the genomes. For example, the trichothecene mycotoxin as well as the carotenoid and fusarubin pigment clusters were present in all genomes examined, whereas the enniatin, fusarin, and zearalenone mycotoxin clusters were present in only some genomes. Some clusters exhibited discontinuous patterns of distribution in that their presence and absence was not correlated with the phylogenetic relationships of species. We also found evidence that cluster loss and horizontal gene transfer have contributed to such distribution patterns. For example, a combination of multiple phylogenetic analyses suggest that five NRPS and seven PKS genes were introduced into FIESC from other Fusarium lineages. CONCLUSION: Our results suggest that although the portion of the genome devoted to SM biosynthesis has remained similar during the evolutionary diversification of FIESC, the ability to produce SMs could be affected by the different distribution of related functional and complete gene clusters.


Assuntos
Fusarium/genética , Fusarium/metabolismo , Genoma Fúngico/genética , Evolução Molecular , Genes Fúngicos/genética , Genômica , Família Multigênica/genética , Filogenia , Homologia de Sequência do Ácido Nucleico
15.
Genetics ; 212(1): 93-110, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30918007

RESUMO

Sk-2 is a meiotic drive element that was discovered in wild populations of Neurospora fungi over 40 years ago. While early studies quickly determined that Sk-2 transmits itself through sexual reproduction in a biased manner via spore killing, the genetic factors responsible for this phenomenon have remained mostly unknown. Here, we identify and characterize rfk-1, a gene required for Sk-2-based spore killing. The rfk-1 gene contains four exons, three introns, and two stop codons, the first of which undergoes RNA editing to a tryptophan codon during sexual development. Translation of an unedited rfk-1 transcript in vegetative tissue is expected to produce a 102-amino acid protein, whereas translation of an edited rfk-1 transcript in sexual tissue is expected to produce a protein with 130 amino acids. These findings indicate that unedited and edited rfk-1 transcripts exist and that these transcripts could have different roles with respect to the mechanism of meiotic drive by spore killing. Regardless of RNA editing, spore killing only succeeds if rfk-1 transcripts avoid silencing caused by a genome defense process called meiotic silencing by unpaired DNA (MSUD). We show that rfk-1's MSUD avoidance mechanism is linked to the genomic landscape surrounding the rfk-1 gene, which is located near the Sk-2 border on the right arm of chromosome III. In addition to demonstrating that the location of rfk-1 is critical to spore-killing success, our results add to accumulating evidence that MSUD helps protect Neurospora genomes from complex meiotic drive elements.


Assuntos
Proteínas Fúngicas/metabolismo , Meiose , Neurospora/metabolismo , Edição de RNA , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Neurospora/genética , Neurospora/fisiologia , Esporos Fúngicos/genética
16.
Fungal Genet Biol ; 122: 31-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30439446

RESUMO

Production of trichothecene toxins occurs in phylogenetically diverse fungi with different lifestyles. In these fungi, most homologs of the trichothecene biosynthetic gene cluster include the transcription factor genes tri6 and tri10. Analyses of phytopathogenic species of Fusarium indicate that the TRI6 and TRI10 proteins positively regulate genes required for synthesis of trichothecenes as well as farnesyl diphosphate (FPP), a precursor of the trichothecene and other terpenoids (e.g., ergosterol). However, the apparent absence of tri6 and tri10 in some trichothecene-producing fungi, and the presence of multiple paralogs of the genes in others suggest considerable variability in genetic regulation of trichothecene biosynthesis. To begin to investigate this variability, we functionally characterized tri10 in the saprotrophic fungus Trichoderma arundinaceum. We found that TRI10 is required for wild-type expression of tri genes and trichothecene production during the first 12 h of growth of T. arundinaceum. Comparison of the effect of tri10 deletion in T. arundinaceum and Fusarium species has provided evidence for similarities in the genetic regulation of trichothecene biosynthesis in these two fungi with different lifestyles. In contrast to trichothecenes, tri10 deletion increased production of ergosterol and the polyketide-derived metabolites aspinolides, which is more likely caused by an increase in the intracellular pool of FPP resulting from loss of trichothecene production. Furthermore, although it is unclear how TRI10 affects polyketide production, one possibility is that it does so by rechanneling terpene precursors.


Assuntos
Vias Biossintéticas/genética , Proteínas Fúngicas/genética , Terpenos/metabolismo , Trichoderma/genética , Ergosterol/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Deleção de Sequência , Trichoderma/metabolismo
17.
Fungal Genet Biol ; 119: 29-46, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30121242

RESUMO

Trichothecenes are terpenoid toxins produced by multiple fungal species with diverse lifestyles. In these fungi, the trichothecene biosynthetic gene (tri) cluster includes a gene encoding a Cys2His2 Zn-finger protein (TRI6). Analyses of plant pathogenic Fusarium species indicate that tri6 regulates tri gene expression. Here, we analyzed TRI6 function in the saprotrophic fungus Trichoderma arundinaceum, which produces the antimicrobial trichothecene harzianum A (HA). Deletion of the TRI6-encoding gene, tri6, blocked HA production and reduced expression of tri genes, and mevalonate biosynthetic genes required for synthesis of farnesyl diphosphate (FPP), the primary metabolite that feeds into trichothecene biosynthesis. In contrast, tri6 deletion did not affect expression of ergosterol biosynthetic genes required for synthesis of ergosterol from FPP, but did increase ergosterol production, perhaps because increased levels of FPP were available for ergosterol synthesis in the absence of trichothecene production. RNA-seq analyses indicated that genes in 10 of 49 secondary metabolite (SM) biosynthetic gene clusters in T. arundinaceum exhibited increased expression and five exhibited reduced expression in a tri6 deletion mutant (Δtri6). Despite the metabolic and transcriptional changes, Δtri6 mutants were not reduced in their ability to inhibit growth of fungal plant pathogens. Our results indicate that T. arundinaceum TRI6 regulates expression of both tri and mevalonate pathway genes. It remains to be determined whether the effects of tri6 deletion on expression of other SM clusters resulted because TRI6 can bind to promoter regions of cluster genes or because trichothecene production affects other SM pathways.


Assuntos
Trichoderma/genética , Tricotecenos/genética , Sequência de Bases/genética , Ergosterol/metabolismo , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Metabolismo Secundário/genética , Deleção de Sequência/genética , Transcriptoma/genética
18.
PLoS Pathog ; 14(4): e1006946, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649280

RESUMO

Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Micotoxinas/química , Filogenia , Trichoderma/genética , Tricotecenos/química , DNA Fúngico , Genômica , Micotoxinas/farmacologia , Trichoderma/efeitos dos fármacos , Trichoderma/crescimento & desenvolvimento , Tricotecenos/farmacologia
19.
Front Plant Sci ; 9: 1936, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687345

RESUMO

It has long been known that hormones affect the interaction of a phytopathogen with its host plant. The pathogen can cause changes in plant hormone homeostasis directly by affecting biosynthesis or metabolism in the plant or by synthesizing and secreting the hormone itself. We previously demonstrated that pathogenic fungi of the Fusarium species complex are able to produce three major types of hormones: auxins, cytokinins, and gibberellins. In this work, we explore changes in the levels of these hormones in maize and mango plant tissues infected with Fusarium. The ability to produce individual phytohormones varies significantly across Fusarium species and such differences likely impact host specificity inducing the unique responses noted in planta during infection. For example, the production of gibberellins by F. fujikuroi leads to elongated rice stalks and the suppression of gibberellin biosynthesis in plant tissue. Although all Fusarium species are able to synthesize auxin, sometimes by multiple pathways, the ratio of its free form and conjugates in infected tissue is affected more than the total amount produced. The recently characterized unique pathway for cytokinin de novo synthesis in Fusarium appears silenced or non-functional in all studied species during plant infection. Despite this, a large increase in cytokinin levels was detected in F. mangiferae infected plants, caused likely by the up-regulation of plant genes responsible for their biosynthesis. Thus, the accumulation of active cytokinins may contribute to mango malformation of the reproductive organs upon infection of mango trees. Together, our findings provide insight into the complex role fungal and plant derived hormones play in the fungal-plant interactions.

20.
Mol Biol Evol ; 34(8): 2002-2015, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460114

RESUMO

In fungi, distribution of secondary metabolite (SM) gene clusters is often associated with host- or environment-specific benefits provided by SMs. In the plant pathogen Alternaria brassicicola (Dothideomycetes), the DEP cluster confers an ability to synthesize the SM depudecin, a histone deacetylase inhibitor that contributes weakly to virulence. The DEP cluster includes genes encoding enzymes, a transporter, and a transcription regulator. We investigated the distribution and evolution of the DEP cluster in 585 fungal genomes and found a wide but sporadic distribution among Dothideomycetes, Sordariomycetes, and Eurotiomycetes. We confirmed DEP gene expression and depudecin production in one fungus, Fusarium langsethiae. Phylogenetic analyses suggested 6-10 horizontal gene transfers (HGTs) of the cluster, including a transfer that led to the presence of closely related cluster homologs in Alternaria and Fusarium. The analyses also indicated that HGTs were frequently followed by loss/pseudogenization of one or more DEP genes. Independent cluster inactivation was inferred in at least four fungal classes. Analyses of transitions among functional, pseudogenized, and absent states of DEP genes among Fusarium species suggest enzyme-encoding genes are lost at higher rates than the transporter (DEP3) and regulatory (DEP6) genes. The phenotype of an experimentally-induced DEP3 mutant of Fusarium did not support the hypothesis that selective retention of DEP3 and DEP6 protects fungi from exogenous depudecin. Together, the results suggest that HGT and gene loss have contributed significantly to DEP cluster distribution, and that some DEP genes provide a greater fitness benefit possibly due to a differential tendency to form network connections.


Assuntos
Alcadienos/metabolismo , Compostos de Epóxi/metabolismo , Álcoois Graxos/metabolismo , Genoma Fúngico/genética , Família Multigênica/genética , Ascomicetos/genética , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Proteínas Fúngicas/genética , Fusarium/genética , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica/genética , Transferência Genética Horizontal/genética , Filogenia , Metabolismo Secundário/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...