Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gynecol Oncol ; 184: 74-82, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38290413

RESUMO

OBJECTIVE: Ovarian cancer (OC) is the leading cause of death from gynecologic malignancy in the United States, and biomarkers of patient outcomes are limited. Data using immunohistochemical (IHC) analysis are mixed regarding whether and which tumor infiltrating lymphocytes (TILs) impact survival, and IHC does not adequately quantify rare cell populations, including CD137+ (4-1BB) tumor-reactive TILs. Our study investigates if a higher percentage of CD3+ CD137+ TILs is associated with improved overall survival (OS) in OC. METHODS: Flow cytometry was performed on viably banked OC digests. Chart review and statistical analysis were performed. Forty-seven patients were included, 40 of whom were diagnosed with high-grade serous ovarian carcinoma (HGSOC), papillary serous carcinoma, or undifferentiated histology. RESULTS: A high percentage of CD3+ CD137+ TILs correlated with improved OS (n = 40, r = 0.48, P = 0.0016). Subjects were divided into CD3+ CD137+ TIL high and low groups by the median. Subjects with high CD3+CD137+ TIL frequencies (>9.6%) had longer OS (Wilcoxon rank-sum test; P = 0.0032) and improved OS (logrank test; P = 0.007). Differences in CD3+ or CD3+ CD8+ TILs did not impact survival. CD3+ CD137+ TILs were predictive of OS regardless of germline mutation or debulking status. Analysis of subgroups including late stage HGSOC and late stage HGSOC with primary optimal cytoreduction indicated CD3+ CD137+ TILs correlated with improved OS after adjusting for age and PARP inhibitor use (P = 0.034 and P = 0.016, respectively). CONCLUSIONS: Prevalence of CD3+ CD137+ TILs in digested OC specimens is associated with improved OS, while general TIL markers are not. CD137 has the potential to be a novel biomarker for survival in OC.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias Ovarianas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Humanos , Feminino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/análise , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/mortalidade , Pessoa de Meia-Idade , Idoso , Complexo CD3/análise , Adulto , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/imunologia , Cistadenocarcinoma Seroso/mortalidade , Idoso de 80 Anos ou mais
2.
Ann Biomed Eng ; 47(7): 1675-1687, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30993538

RESUMO

The selective permeability of the blood-brain barrier (BBB) is controlled by tight junction-expressing brain endothelial cells. The integrity of these junctional proteins, which anchor to actin via zonula occludens (e.g., ZO-1), plays a vital role in barrier function. While disrupted junctions are linked with several neurodegenerative diseases, the mechanisms underlying disruption are not fully understood. This is largely due to the lack of appropriate models and efficient techniques to quantify edge-localized protein. Here, we developed a novel junction analyzer program (JAnaP) to semi-automate the quantification of junctional protein presentation. Because significant evidence suggests a link between myosin-II mediated contractility and endothelial barrier properties, we used the JAnaP to investigate how biochemical and physical cues associated with altered contractility influence ZO-1 presentation in brain endothelial cells. Treatment with contractility-decreasing agents increased continuous ZO-1 presentation; however, this increase was greatest on soft gels of brain-relevant stiffness, suggesting improved barrier maturation. This effect was reversed by biochemically inhibiting protein phosphatases to increase cell contractility on soft substrates. These results promote the use of brain-mimetic substrate stiffness in BBB model design and motivates the use of this novel JAnaP to provide insight into the role of junctional protein presentation in BBB physiology and pathologies.


Assuntos
Encéfalo/citologia , Células Endoteliais/fisiologia , Junções Intercelulares/fisiologia , Proteína da Zônula de Oclusão-1/fisiologia , Células Cultivadas , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA