Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biol Psychiatry ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909668

RESUMO

Extinction of traumatic memory, a primary treatment approach (termed exposure therapy) in post-traumatic stress disorder (PTSD), occurs through relearning and may be subserved at the molecular level by long-term potentiation (LTP) of relevant circuits. In parallel, repetitive transcranial magnetic stimulation (rTMS) is thought to work through LTP-like mechanisms and may provide a novel, safe, and effective treatment for PTSD. Our recent failed randomized controlled trial (1) emphasizes the necessity of correctly identifying cortical targets, directionality of TMS protocol, and role of memory activation. Here we provide a systematic review of TMS for PTSD to further identify how, where, and when TMS treatment should be delivered to alleviate PTSD symptoms. We conducted a systematic review of the literature searching for rTMS clinical trials involving PTSD patients and outcomes. We searched MEDLINE through October 25th, 2023 for "TMS and PTSD" and "transcranial magnetic stimulation and posttraumatic stress disorder." Thirty-one publications met our inclusion criteria (k=17 randomized controlled trials (RCTs), k=14 open label). RCT protocols were varied in TMS protocols, cortical TMS targets, and memory activation protocols. There was no clear superiority across protocols of low-frequency (k=5) vs. high-frequency protocols (k=6), or by stimulation location. Memory provocation or exposure protocols (k=7) appear to enhance response. Overall, TMS appears to be effective in treating PTSD symptoms across a variety of TMS frequencies, hemispheric target differences, and exposure protocols. Disparate protocols may be conceptually harmonized when viewed as potentiating proposed anxiolytic networks or suppressing anxiogenic networks.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38729243

RESUMO

Transcranial magnetic stimulation (TMS) is used to treat several neuropsychiatric disorders including depression, where it is effective in approximately half of patients for whom pharmacological approaches have failed. Treatment response is related to stimulation parameters such as the stimulation frequency, pattern, intensity, location, total number of pulses and sessions applied, as well as target brain network engagement. One critical but underexplored component of the stimulation procedure is the orientation or yaw angle of the commonly used figure-of-eight TMS coil, which is known to impact neuronal response to TMS. However, coil orientation has remained largely unchanged since TMS was first used to treat depression and continues to be based on motor cortex anatomy which may not be optimal for the dorsolateral prefrontal cortex treatment site. This targeted narrative review evaluates experimental, clinical, and computational evidence indicating that optimizing coil orientation may potentially improve TMS treatment outcomes. The properties of the electric field induced by TMS, the changes to this field caused by the differing conductivities of head tissues, and the interaction between coil orientation and the underlying cortical anatomy are summarized. We describe evidence that the magnitude and site of cortical activation, surrogate markers of TMS dosing and brain network targeting considered central in clinical response to TMS, are influenced by coil orientation. We suggest that coil orientation should be considered when applying therapeutic TMS and propose several approaches to optimizing this potentially important treatment parameter.

3.
J Psychiatry Neurosci ; 49(1): E59-E76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359933

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) is a noninvasive neurostimulation modality that has been used to study human synaptic plasticity. Leveraging work in ex vivo preparations, mechanistically informed pharmacological adjuncts to TMS have been used to improve our fundamental understanding of TMS-induced synaptic plasticity. METHODS: We systematically reviewed the literature pairing pharmacological adjuncts with TMS plasticity-induction protocols in humans. We searched MEDLINE, PsycINFO, and Embase from 2013 to Mar. 10, 2023. Studies published before 2013 were extracted from a previous systematic review. We included studies using repetitive TMS, theta-burst stimulation, paired associative stimulation, and quadripulse stimulation paradigms in healthy and clinical populations. RESULTS: Thirty-six studies met our inclusion criteria (28 in healthy and 8 in clinical populations). Most pharmacological agents have targeted the glutamatergic N-methyl-d-aspartate (NMDA; 15 studies) or dopamine receptors (13 studies). The NMDA receptor is necessary for TMS-induced plasticity; however, sufficiency has not been shown across protocols. Dopaminergic modulation of TMS-induced plasticity appears to be dose-dependent. The GABAergic, cholinergic, noradrenergic, and serotonergic neurotransmitter systems have small evidence bases supporting modulation of TMS-induced plasticity, as do voltage-gated calcium and sodium channels. Studies in clinical populations suggest that pharmacological adjuncts to TMS may rescue motor cortex plasticity, with implications for therapeutic applications of TMS and a promising clinical trial in depression. LIMITATIONS: This review is limited by the predominance in the literature of studies with small sample sizes and crossover designs. CONCLUSION: Pharmacologically enhanced TMS largely parallels findings from ex vivo preparations. As this area expands and novel targets are tested, adequately powered samples in healthy and clinical populations will inform the mechanisms of TMS-induced plasticity in health and disease.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Plasticidade Neuronal/fisiologia , Dopamina , Cálcio , Potencial Evocado Motor/fisiologia
5.
J Affect Disord ; 351: 66-73, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244806

RESUMO

BACKGROUND: TMS is increasingly used to treat depression, but predictors of treatment outcomes remain unclear. We assessed the association between age and TMS response given inconsistent prior reports limited by small sample size, heterogeneity, outdated TMS parameters, lack of assessment of H1-coil TMS, and lack of an a priori hypothesis. We hypothesized that older age would be associated with better treatment response based on trends in recent large exploratory analyses. METHODS: We conducted a naturalistic retrospective analysis of patients (n = 378) ages 18-80 with depression (baseline Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) > 5) who received 29-35 sessions of TMS between 2014 and 2021. Response was assessed using percent reduction of QIDS-SR. The relationship between percent response or remission and age group was assessed using the chi-square test. RESULTS: 85 % of patients received the standard protocol of H1-coil TMS to the left DLPFC. Percent response and remission rates for the entire study sample increased with age (response: p = .026; remission: p = .0023). This finding was stronger in female patients (response: p = .0033; remission: p = .00098) and was not observed in male patients (response: p = .73; remission: p = .26). This was confirmed in a sub-analysis of patients who only received the standard protocol with the H1-coil for the entire treatment course. LIMITATIONS: Naturalistic retrospective analysis from one academic center. CONCLUSIONS: Older age is associated with a better antidepressant response to H1-coil TMS in female patients. This was demonstrated in a hypothesis-driven confirmation of prior exploratory findings in a large sample size with a homogeneous data collection protocol across all participants.


Assuntos
Antidepressivos , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Idoso , Estimulação Magnética Transcraniana/métodos , Estudos Retrospectivos , Resultado do Tratamento , Antidepressivos/uso terapêutico , Tamanho da Amostra
6.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37938213

RESUMO

Mutations in IQSEC2/BRAG1 cause intellectual dysfunction by impairing ARF-GEF activity and long-term depression. In this issue, Bai et al. (https://doi.org/10.1083/jcb.202307117) discover how constitutive ARF-GEF activity is regulated by a closed conformation which opens in the presence of Ca2+. Two known pathogenic mutations cause "leaky" autoinhibition with reduced synaptic dynamic range and impaired cognitive performance.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Plasticidade Neuronal , Mutação , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Cálcio , Cognição
7.
Addict Biol ; 28(7): e13288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37369125

RESUMO

Preclinical and clinical work suggests that mifepristone may be a viable treatment for alcohol use disorder (AUD). This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD (N = 32). We assessed safety, alcohol craving and consumption, after 1-week mifepristone 600 mg/day administration, in a human laboratory study comprised of a single oral yohimbine administration (32.4 mg), a cue-reactivity procedure and alcohol self-administration. Safety was monitored by adverse events and hemodynamic parameters, alcohol craving by alcohol craving questionnaire and cue-induced saliva output. During the alcohol self-administration, we assessed alcohol pharmacokinetics, subjective effects and consumption. Outcomes were assessed using Generalized Estimating Equations and mediation analysis. Mild-moderate adverse events were reported in both conditions. There was no statistically significant difference between mifepristone and placebo in alcohol pharmacokinetics and subjective effects. Furthermore, blood pressure increased only in the placebo condition after the stress-induced laboratory procedures. Mifepristone, compared to placebo, significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a developed preclinical procedure to a human laboratory study, confirming the safety of mifepristone in people with AUD and providing evidence to its role in reducing alcohol craving under stress procedures. The lack of effects on alcohol drinking may be related to the selection of non-treatment seekers and suggests future treatment-oriented trials should investigate mifepristone in people with AUD.


Assuntos
Alcoolismo , Fissura , Humanos , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Hidrocortisona/farmacologia , Alcoolismo/tratamento farmacológico , Consumo de Bebidas Alcoólicas , Etanol/farmacologia , Método Duplo-Cego
9.
Front Neural Circuits ; 17: 1124221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025991

RESUMO

Motor skill learning has been linked to functional and structural changes in the brain. Musicians and athletes undergo intensive motor training through the practice of an instrument or sport and have demonstrated use-dependent plasticity that may be subserved by long-term potentiation (LTP) processes. We know less, however, about whether the brains of musicians and athletes respond to plasticity-inducing interventions, such as repetitive transcranial magnetic stimulation (rTMS), differently than those without extensive motor training. In a pharmaco-rTMS study, we evaluated motor cortex excitability before and after an rTMS protocol in combination with oral administration of D-cycloserine (DCS) or placebo. In a secondary covariate analysis, we compared results between self-identified musicians and athletes (M&As) and non-musicians and athletes (non-M&As). Three TMS measures of cortical physiology were used to evaluate plasticity. We found that M&As did not have higher baseline corticomotor excitability. However, a plasticity-inducing protocol (10-Hz rTMS in combination with DCS) strongly facilitated motor-evoked potentials (MEPs) in M&As, but only weakly in non-M&As. Placebo and rTMS produced modest facilitation in both groups. Our findings suggest that motor practice and learning create a neuronal environment more responsive to plasticity-inducing events, including rTMS. These findings may explain one factor contributing to the high inter-individual variability found with MEP data. Greater capacity for plasticity holds implications for learning paradigms, such as psychotherapy and rehabilitation, by facilitating LTP-like activation of key networks, including recovery from neurological/mental disorders.


Assuntos
Potenciação de Longa Duração , Plasticidade Neuronal , Humanos , Atletas , Potencial Evocado Motor/fisiologia , Aprendizagem , Plasticidade Neuronal/fisiologia , Estimulação Magnética Transcraniana/métodos
10.
J Neuropsychiatry Clin Neurosci ; 35(4): 333-340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021384

RESUMO

Unprecedented knowledge of the brain is inevitably contributing to the convergence of neurology and psychiatry. However, clinical training continues to follow a divergent approach established in the 19th century. An etiological approach will continue to shift more psychiatric patients to the care of neurologists who are untrained in psychiatric management. At the same time, this new era of diagnostic biomarkers and neuroscience-based precision treatments requires skills not readily available to those trained in psychiatry. The challenges in training the next generation of doctors include establishing competence involving aspects of the whole brain, fostering the subspecialized expertise needed to remain current, and developing programs that are feasible in duration and practical in implementation. A new 4-year residency training program proposed in this article could replace existing residency programs. The program includes 2 years of common and urgent training in various aspects of neurology and psychiatry followed by 2 years of elective subspecialty tracks. The concept is similar to internal medicine residencies and fellowships. No changes to existing departmental structures are necessary. In concert with the emerging biological approach to the brain, "brain medicine" is proposed as a new name to denote this practice in the simplest terms: a focus on all aspects of the brain.

11.
Front Psychiatry ; 14: 976921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911109

RESUMO

Introduction: Synapses and spines play a significant role in major depressive disorder (MDD) pathophysiology, recently highlighted by the rapid antidepressant effect of ketamine and psilocybin. According to the Bayesian brain and interoception perspectives, MDD is formalized as being stuck in affective states constantly predicting negative energy balance. To understand how spines and synapses relate to the predictive function of the neocortex and thus to symptoms, we used the temporal memory (TM), an unsupervised machine-learning algorithm. TM models a single neocortical layer, learns in real-time, and extracts and predicts temporal sequences. TM exhibits neocortical biological features such as sparse firing and continuous online learning using local Hebbian-learning rules. Methods: We trained a TM model on random sequences of upper-case alphabetical letters, representing sequences of affective states. To model depression, we progressively destroyed synapses in the TM model and examined how that affected the predictive capacity of the network. We found that the number of predictions decreased non-linearly. Results: Destroying 50% of the synapses slightly reduced the number of predictions, followed by a marked drop with further destruction. However, reducing the synapses by 25% distinctly dropped the confidence in the predictions. Therefore, even though the network was making accurate predictions, the network was no longer confident about these predictions. Discussion: These findings explain how interoceptive cortices could be stuck in limited affective states with high prediction error. Connecting ketamine and psilocybin's proposed mechanism of action to depression pathophysiology, the growth of new synapses would allow representing more futuristic predictions with higher confidence. To our knowledge, this is the first study to use the TM model to connect changes happening at synaptic levels to the Bayesian formulation of psychiatric symptomatology. Linking neurobiological abnormalities to symptoms will allow us to understand the mechanisms of treatments and possibly, develop new ones.

12.
Front Psychiatry ; 14: 1137681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911138

RESUMO

Background: Caffeine is a widely used psychostimulant. In the brain, caffeine acts as a competitive, non-selective adenosine receptor antagonist of A1 and A2A, both known to modulate long-term potentiation (LTP), the cellular basis of learning and memory. Repetitive transcranial magnetic stimulation (rTMS) is theorized to work through LTP induction and can modulate cortical excitability as measured by motor evoked potentials (MEPs). The acute effects of single caffeine doses diminish rTMS-induced corticomotor plasticity. However, plasticity in chronic daily caffeine users has not been examined. Method: We conducted a post hoc secondary covariate analysis from two previously published plasticity-inducing pharmaco-rTMS studies combining 10 Hz rTMS and D-cycloserine (DCS) in twenty healthy subjects. Results: In this hypothesis-generating pilot study, we observed enhanced MEP facilitation in non-caffeine users compared to caffeine users and placebo. Conclusion: These preliminary data highlight a need to directly test the effects of caffeine in prospective well-powered studies, because in theory, they suggest that chronic caffeine use could limit learning or plasticity, including rTMS effectiveness.

13.
J Clin Neurophysiol ; 40(5): 384-390, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930205

RESUMO

SUMMARY: Sports-related concussion is now in public awareness more than ever before. Investigations into underlying pathophysiology and methods of assessment have correspondingly increased at an exponential rate. In this review, we aim to highlight some of the evidence supporting emerging techniques in the fields of neurophysiology, neuroimaging, vestibular, oculomotor, autonomics, head sensor, and accelerometer technology in the setting of the current standard: clinical diagnosis and management. In summary, the evidence we reviewed suggests that (1) head impact sensors and accelerometers may detect possible concussions that would not otherwise receive evaluation; (2) clinical diagnosis may be aided by sideline vestibular, oculomotor, and portable EEG techniques; (3) clinical decisions on return-to-play eligibility are currently not sensitive at capturing the neurometabolic, cerebrovascular, neurophysiologic, and microstructural changes that biomarkers have consistently detected days and weeks after clinical clearance. Such biomarkers include heart rate variability, quantitative electroencephalography, as well as functional, metabolic, and microstructural neuroimaging. The current challenge is overcoming the lack of consistency and replicability of any one particular technique to reach consensus.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Humanos , Traumatismos em Atletas/diagnóstico , Concussão Encefálica/diagnóstico , Neuroimagem , Eletroencefalografia
14.
medRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36711869

RESUMO

Preclinical and clinical work suggests that mifepristone (glucocorticoid receptor antagonist), may be a viable treatment for alcohol use disorder (AUD). The aim of this work was to translate our preclinical mifepristone study using yohimbine (α2 receptor antagonist) stress-induced reinstatement of alcohol-seeking to a clinical setting. This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD ( N =32). We investigated the safety, alcohol craving and consumption after oral administration of mifepristone (600mg daily for a week) in a human laboratory study comprised of administration of yohimbine in a cue-reactivity procedure and alcohol self-administration. Outcomes were assessed using Generalized Estimating Equations and mediation and moderation analyses assessed mechanisms of action and precision medicine targets. We did not observe serious adverse events related to the study drugs or study procedure and mild to moderate non-serious adverse events were reported by both study conditions. Also, there was no statistically-significant difference between the mifepristone and placebo in the hemodynamic response, alcohol subjective effects and pharmacokinetics parameters. Mifepristone significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Moderation analysis with family history density of AUD (FHDA) and mifepristone, suggested that reduced craving was present in individuals with low , but not high FHDA. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a preclinical paradigm to a human laboratory study confirming safety, tolerability and efficacy of mifepristone in an alcohol paradigm. Mediation analysis showed that the effect of mifepristone on craving was not related to mifepristone-induced increases in cortisol and moderation of FHDA suggested the importance of evaluating AUD endophenotypes for pharmacotherapies. Clinical trial registration: Clinicaltrials.gov ; NCT02243709. IND/FDA: 121984, mifepristone and yohimbine (Holder: Haass-Koffler).

17.
Front Psychiatry ; 13: 867091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619619

RESUMO

Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive, effective, and FDA-approved brain stimulation method. However, rTMS parameter selection remains largely unexplored, with great potential for optimization. In this review, we highlight key studies underlying next generation rTMS therapies, particularly focusing on: (1) rTMS Parameters, (2) rTMS Target Engagement, (3) rTMS Interactions with Endogenous Brain Activity, and (4) Heritable Predisposition to Brain Stimulation Treatments. Methods: We performed a targeted review of pre-clinical and clinical rTMS studies. Results: Current evidence suggests that rTMS pattern, intensity, frequency, train duration, intertrain interval, intersession interval, pulse and session number, pulse width, and pulse shape can alter motor excitability, long term potentiation (LTP)-like facilitation, and clinical antidepressant response. Additionally, an emerging theme is how endogenous brain state impacts rTMS response. Researchers have used resting state functional magnetic resonance imaging (rsfMRI) analyses to identify personalized rTMS targets. Electroencephalography (EEG) may measure endogenous alpha rhythms that preferentially respond to personalized stimulation frequencies, or in closed-loop EEG, may be synchronized with endogenous oscillations and even phase to optimize response. Lastly, neuroimaging and genotyping have identified individual predispositions that may underlie rTMS efficacy. Conclusions: We envision next generation rTMS will be delivered using optimized stimulation parameters to rsfMRI-determined targets at intensities determined by energy delivered to the cortex, and frequency personalized and synchronized to endogenous alpha-rhythms. Further research is needed to define the dose-response curve of each parameter on plasticity and clinical response at the group level, to determine how these parameters interact, and to ultimately personalize these parameters.

18.
Neuromodulation ; 25(8): 1289-1298, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35088731

RESUMO

The fields of Neurobiology and Neuromodulation have never been closer. Consequently, the phrase "synaptic plasticity" has become very familiar to non-basic scientists, without actually being very familiar. We present the "Story of the AMPA receptor," an easy-to-understand "10,000 ft" narrative overview of synaptic plasticity, oriented toward the brain stimulation clinician or scientist without basic science training. Neuromodulation is unparalleled in its capacity to both modulate and probe plasticity, yet many are not comfortable with their grasp of the topic. Here, we describe the seminal discoveries that defined the canonical mechanisms of long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity. We then provide a conceptual framework for how plasticity at the synapse is accomplished, describing the functional roles of N-methyl-d-aspartate (NMDA) receptors and calcium, their effect on calmodulin, phosphatases (ie, calcineurin), kinases (ie, calcium/calmodulin-dependent protein kinase [CaMKII]), and structural "scaffolding" proteins (ie, post-synaptic density protein [PSD-95]). Ultimately, we describe how these affect the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor. More specifically, AMPA receptor delivery to (LTP induction), removal from (LTD), or recycling within (LTP maintenance) the synapse is determined by the status of phosphorylation and protein binding at specific sites on the tails of AMPA receptor subunits: GluA1 and GluA2. Finally, we relate these to transcranial magnetic stimulation (TMS) treatment, highlighting evidences for LTP as the basis of high-frequency TMS therapy, and briefly touch on the role of plasticity for other brain stimulation modalities. In summary, we present Synaptic Plasticity 101 as a singular introductory reference for those less familiar with the mechanisms of synaptic plasticity.


Assuntos
Cálcio , Receptores de AMPA , Humanos , Receptores de AMPA/metabolismo , Cálcio/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Encéfalo/metabolismo , Hipocampo/fisiologia
19.
Brain Stimul ; 15(2): 316-325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051642

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) is an effective therapy for patients with treatment-resistant depression. TMS likely induces functional connectivity changes in aberrant circuits implicated in depression. Electroencephalography (EEG) "microstates" are topographies hypothesized to represent large-scale resting networks. Canonical microstates have recently been proposed as markers for major depressive disorder (MDD), but it is not known if or how they change following TMS. METHODS: Resting EEG was obtained from 49 MDD patients at baseline and following six weeks of daily TMS. Polarity-insensitive modified k-means clustering was used to segment EEGs into constituent microstates. Microstates were localized via sLORETA. Repeated-measures mixed models tested for within-subject differences over time and t-tests compared microstate features between TMS responder and non-responder groups. RESULTS: Six microstates (MS-1 - MS-6) were identified from all available EEG data. Clinical response to TMS was associated with increases in features of MS-2, along with decreased metrics of MS-3. Nonresponders showed no significant changes in any microstate. Change in occurrence and coverage of both MS-2 (increased) and MS-3 (decreased) correlated with symptom change magnitude over the course of TMS treatment. CONCLUSIONS: We identified EEG microstates associated with clinical improvement following a course of TMS therapy. Results suggest selective modulation of resting networks observable by EEG, which is inexpensive and easily acquired in the clinic setting.


Assuntos
Transtorno Depressivo Maior , Estimulação Magnética Transcraniana , Biomarcadores , Encéfalo/fisiologia , Transtorno Depressivo Maior/terapia , Eletroencefalografia , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...