Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6694): 453-458, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662833

RESUMO

Governments recently adopted new global targets to halt and reverse the loss of biodiversity. It is therefore crucial to understand the outcomes of conservation actions. We conducted a global meta-analysis of 186 studies (including 665 trials) that measured biodiversity over time and compared outcomes under conservation action with a suitable counterfactual of no action. We find that in two-thirds of cases, conservation either improved the state of biodiversity or at least slowed declines. Specifically, we find that interventions targeted at species and ecosystems, such as invasive species control, habitat loss reduction and restoration, protected areas, and sustainable management, are highly effective and have large effect sizes. This provides the strongest evidence to date that conservation actions are successful but require transformational scaling up to meet global targets.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Extinção Biológica , Espécies Introduzidas , Animais , Ecossistema
2.
Curr Biol ; 31(8): 1804-1810.e5, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33675699

RESUMO

To sustain life, humans and other terrestrial animals must maintain a tight balance of water gain and water loss each day.1-3 However, the evolution of human water balance physiology is poorly understood due to the absence of comparative measures from other hominoids. While humans drink daily to maintain water balance, rainforest-living great apes typically obtain adequate water from their food and can go days or weeks without drinking4-6. Here, we compare isotope-depletion measures of water turnover (L/d) in zoo- and rainforest-sanctuary-housed apes (chimpanzees, bonobos, gorillas, and orangutans) with 5 diverse human populations, including a hunter-gatherer community in a semi-arid savannah. Across the entire sample, water turnover was strongly related to total energy expenditure (TEE, kcal/d), physical activity, climate (ambient temperature and humidity), and fat free mass. In analyses controlling for those factors, water turnover was 30% to 50% lower in humans than in other apes despite humans' greater sweating capacity. Water turnover in zoo and sanctuary apes was similar to estimated turnover in wild populations, as was the ratio of water intake to dietary energy intake (∼2.8 mL/kcal). However, zoo and sanctuary apes ingested a greater ratio of water to dry matter of food, which might contribute to digestive problems in captivity. Compared to apes, humans appear to target a lower ratio of water/energy intake (∼1.5 mL/kcal). Water stress due to changes in climate, diet, and behavior apparently led to previously unknown water conservation adaptations in hominin physiology.


Assuntos
Conservação dos Recursos Hídricos , Animais , Metabolismo Energético , Hominidae , Humanos , Pan paniscus , Pan troglodytes , Pongo
3.
Proc Natl Acad Sci U S A ; 115(16): 4134-4139, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610309

RESUMO

The evolutionary emergence of humans' remarkably economical walking gait remains a focus of research and debate, but experimentally validated approaches linking locomotor capability to postcranial anatomy are limited. In this study, we integrated 3D morphometrics of hominoid pelvic shape with experimental measurements of hip kinematics and kinetics during walking and climbing, hamstring activity, and passive range of hip extension in humans, apes, and other primates to assess arboreal-terrestrial trade-offs in ischium morphology among living taxa. We show that hamstring-powered hip extension during habitual walking and climbing in living apes and humans is strongly predicted, and likely constrained, by the relative length and orientation of the ischium. Ape pelves permit greater extensor moments at the hip, enhancing climbing capability, but limit their range of hip extension, resulting in a crouched gait. Human pelves reduce hip extensor moments but permit a greater degree of hip extension, which greatly improves walking economy (i.e., distance traveled/energy consumed). Applying these results to fossil pelves suggests that early hominins differed from both humans and extant apes in having an economical walking gait without sacrificing climbing capability. Ardipithecus was capable of nearly human-like hip extension during bipedal walking, but retained the capacity for powerful, ape-like hip extension during vertical climbing. Hip extension capability was essentially human-like in Australopithecus afarensis and Australopithecus africanus, suggesting an economical walking gait but reduced mechanical advantage for powered hip extension during climbing.


Assuntos
Marcha/fisiologia , Músculos Isquiossurais/fisiologia , Quadril/fisiologia , Hominidae/fisiologia , Adulto , Anatomia Comparada , Animais , Antropometria , Evolução Biológica , Fenômenos Biomecânicos , Fósseis , Hominidae/anatomia & histologia , Humanos , Hylobatidae/anatomia & histologia , Hylobatidae/fisiologia , Masculino , Pelve/fisiologia , Postura , Amplitude de Movimento Articular , Caminhada/fisiologia
4.
Am J Phys Anthropol ; 166(1): 43-55, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29313896

RESUMO

OBJECTIVES: Great apes provide a point of reference for understanding the evolution of locomotion in hominoids and early hominins. We assessed (1) the extent to which great apes use diagonal sequence, diagonal couplet gaits, like other primates, (2) the extent to which gait and posture vary across great apes, and (3) the role of body mass and limb proportions on ape quadrupedal kinematics. METHODS: High-speed digital video of zoo-housed bonobos (Pan paniscus, N = 8), chimpanzees (Pan troglodytes, N = 13), lowland gorillas (Gorilla gorilla, N = 13), and orangutans (Pongo spp. N = 6) walking over-ground at self-selected speeds were used to determine the timing of limb touch-down, take-off, and to measure joint and segment angles at touch-down, midstance, and take-off. RESULTS: The great apes in our study showed broad kinematic and spatiotemporal similarity in quadrupedal walking. Size-adjusted walking speed was the strongest predictor of gait variables. Body mass had a negligible effect on variation in joint and segment angles, but stride frequency did trend higher among larger apes in analyses including size-adjusted speed. In contrast to most other primates, great apes did not favor diagonal sequence footfall patterns, but exhibited variable gait patterns that frequently shifted between diagonal and lateral sequences. CONCLUSION: Similarities in the terrestrial walking kinematics of extant great apes likely reflect their similar post-cranial anatomy and proportions. Our results suggest that the walking kinematics of orthograde, suspensory Miocene ape species were likely similar to living great apes, and highlight the utility of videographic and behavioral data in interpreting primate skeletal morphology.


Assuntos
Evolução Biológica , Hominidae/fisiologia , Caminhada/fisiologia , Animais , Antropologia Física , Fenômenos Biomecânicos/fisiologia , Feminino , Marcha/fisiologia , Hominidae/anatomia & histologia , Masculino
5.
Nature ; 533(7603): 390-2, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27144364

RESUMO

Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day(-1)) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day(-1), respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day(-1)), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history.


Assuntos
Envelhecimento/metabolismo , Metabolismo Basal , Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Metabolismo Energético , Tecido Adiposo/metabolismo , Adulto , Animais , Composição Corporal , Tamanho Corporal , Água Corporal/química , Feminino , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/metabolismo , Humanos , Longevidade/fisiologia , Masculino , Tamanho do Órgão , Pan paniscus/anatomia & histologia , Pan paniscus/metabolismo , Pan troglodytes/anatomia & histologia , Pan troglodytes/metabolismo , Pongo/anatomia & histologia , Pongo/metabolismo , Magreza/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...