Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Resusc Plus ; 1-2: 100005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34223292

RESUMO

Emergency airway management is often complicated by the presence of blood, emesis or other contaminants in the airway. Traditional airway management education has lacked task-specific training focused on mitigating massive airway contamination. The Suction Assisted Laryngoscopy and Airway Decontamination (SALAD) technique was developed in order to address the problem of massive airway contamination both in simulation training and in vivo. We review the evidence describing the dangers associated with airway contamination, and describe the SALAD technique in detail.

4.
Water Sci Technol ; 59(1): 9-14, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19151480

RESUMO

In the United States, environmentally impaired rivers are subject to regulation under total maximum daily load (TMDL) regulations that specify watershed wide water quality standards. In California, the setting of TMDL standards is accompanied by the development of scientific and management plans directed at achieving specific water quality objectives. The San Joaquin River (SJR) in the Central Valley of California now has a TMDL for dissolved oxygen (DO). Low DO conditions in the SJR are caused in part by excessive phytoplankton growth (eutrophication) in the shallow, upstream portion of the river that create oxygen demand in the deeper estuary. This paper reports on scientific studies that were conducted to develop a mass balance on nutrients and phytoplankton in the SJR. A mass balance model was developed using WARMF, a model specifically designed for use in TMDL management applications. It was demonstrated that phytoplankton biomass accumulates rapidly in a 88 km reach where plankton from small, slow moving tributaries are diluted and combined with fresh nutrient inputs in faster moving water. The SJR-WARMF model was demonstrated to accurately predict phytoplankton growth in the SJR. Model results suggest that modest reductions in nutrients alone will not limit algal biomass accumulation, but that combined strategies of nutrient reduction and algal control in tributaries may have benefit. The SJR-WARMF model provides stakeholders a practical, scientific tool for setting remediation priorities on a watershed scale.


Assuntos
Monitoramento Ambiental , Recuperação e Remediação Ambiental , Eutrofização , Oxigênio/análise , Rios , Animais , Biomassa , California , Clorofila/análise , Clorofila/metabolismo , Clorofila A , Geografia , Modelos Biológicos , Oxigênio/metabolismo , Fitoplâncton/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...