Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 79(13): 3445-3454, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31088836

RESUMO

Although ovarian cancer has a low incidence rate, it remains the most deadly gynecologic malignancy. Previous work has demonstrated that the DNMTi 5-Azacytidine (5AZA-C) activates type I interferon signaling to increase IFNγ+ T cells and natural killer (NK) cells and reduce the percentage of macrophages in the tumor microenvironment. To improve the efficacy of epigenetic therapy, we hypothesized that the addition of α-difluoromethylornithine (DFMO), an ornithine decarboxylase inhibitor, may further decrease immunosuppressive cell populations improving outcome. We tested this hypothesis in an immunocompetent mouse model for ovarian cancer and found that in vivo, 5AZA-C and DFMO, either alone or in combination, significantly increased survival, decreased tumor burden, and caused recruitment of activated (IFNγ+) CD4+ T cells, CD8+ T cells, and NK cells. The combination therapy had a striking increase in survival when compared with single-agent treatment, despite a smaller difference in recruited lymphocytes. Instead, combination therapy led to a significant decrease in immunosuppressive cells such as M2 polarized macrophages and an increase in tumor-killing M1 macrophages. In this model, depletion of macrophages with a CSF1R-blocking antibody reduced the efficacy of 5AZA-C + DFMO treatment and resulted in fewer M1 macrophages in the tumor microenvironment. These observations suggest our novel combination therapy modifies macrophage polarization in the tumor microenvironment, recruiting M1 macrophages and prolonging survival. SIGNIFICANCE: Combined epigenetic and polyamine-reducing therapy stimulates M1 macrophage polarization in the tumor microenvironment of an ovarian cancer mouse model, resulting in decreased tumor burden and prolonged survival.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cistadenocarcinoma Seroso/imunologia , Modelos Animais de Doenças , Imunidade Inata/imunologia , Macrófagos/imunologia , Neoplasias Ovarianas/imunologia , Microambiente Tumoral/imunologia , Animais , Azacitidina/administração & dosagem , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Eflornitina/administração & dosagem , Feminino , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Poliaminas/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos
2.
Cancer Cell ; 35(4): 633-648.e7, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30956060

RESUMO

UHRF1 facilitates the establishment and maintenance of DNA methylation patterns in mammalian cells. The establishment domains are defined, including E3 ligase function, but the maintenance domains are poorly characterized. Here, we demonstrate that UHRF1 histone- and hemimethylated DNA binding functions, but not E3 ligase activity, maintain cancer-specific DNA methylation in human colorectal cancer (CRC) cells. Disrupting either chromatin reader activity reverses DNA hypermethylation, reactivates epigenetically silenced tumor suppressor genes (TSGs), and reduces CRC oncogenic properties. Moreover, an inverse correlation between high UHRF1 and low TSG expression tracks with CRC progression and reduced patient survival. Defining critical UHRF1 domain functions and its relationship with CRC prognosis suggests directions for, and value of, targeting this protein to develop therapeutic DNA demethylating agents.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Neoplasias Colorretais/enzimologia , Metilação de DNA , Epigênese Genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Células CACO-2 , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ilhas de CpG , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Mutação , Metástase Neoplásica , Dedos de Zinco PHD , Prognóstico , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética
3.
Mol Biosyst ; 7(2): 464-71, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21060909

RESUMO

Allosteric proteins demonstrate the phenomenon of a ligand binding to a protein at a regulatory or effector site and thereby changing the chemical affinity of the catalytic site. As such, allostery is extremely important biologically as a regulatory mechanism for molecular concentrations in many cellular processes. One particularly interesting feature of allostery is that often the catalytic and effector sites are separated by a large distance. Structural comparisons of allosteric proteins resolved in both inactive and active states indicate that a variety of structural rearrangement and changes in motions may contribute to general allosteric behavior. In general it is expected that the coupling of catalytic and regulatory sites is responsible for allosteric behavior. We utilize a novel examination of allostery using rigidity analysis of the underlying graph of the protein structures. Our results indicate a general global change in rigidity associated with allosteric transitions where the R state is more rigid than the T state. A set of allosteric proteins with heterotropic interactions is used to test the hypothesis that catalytic and effector sites are structurally coupled. Observation of a rigid path connecting the effector and catalytic sites in 68.75% of the structures points to rigidity as a means by which the distal sites communicate with each other and so contribute to allosteric regulation. Thus structural rigidity is shown to be a fundamental underlying property that promotes cooperativity and non-locality seen in allostery.


Assuntos
Sítio Alostérico , Domínio Catalítico , Modelos Moleculares , Estrutura Molecular
5.
Angew Chem Int Ed Engl ; 38(13-14): 1960-1962, 1999 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34182697

RESUMO

In the absence of an oxidant, tetrapropylammonium perruthenate (TPAP) is reduced by 2-undecanol to a low-valent ruthenium species that efficiently catalyzes the isomerization of a wide range of allylic alcohols into the corresponding saturated carbonyl derivatives [Eq. (1)]. R1, R2, R3, R4=alkyl, aryl, H.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...