Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(44): e2206008, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35986672

RESUMO

Introducing engineered nanoparticles (NPs) into a biofluid such as blood plasma leads to the formation of a selective and reproducible protein corona at the particle-protein interface, driven by the relationship between protein-NP affinity and protein abundance. This enables scalable systems that leverage protein-nano interactions to overcome current limitations of deep plasma proteomics in large cohorts. Here the importance of the protein to NP-surface ratio (P/NP) is demonstrated and protein corona formation dynamics are modeled, which determine the competition between proteins for binding. Tuning the P/NP ratio significantly modulates the protein corona composition, enhancing depth and precision of a fully automated NP-based deep proteomic workflow (Proteograph). By increasing the binding competition on engineered NPs, 1.2-1.7× more proteins with 1% false discovery rate are identified on the surface of each NP, and up to 3× more proteins compared to a standard plasma proteomics workflow. Moreover, the data suggest P/NP plays a significant role in determining the in vivo fate of nanomaterials in biomedical applications. Together, the study showcases the importance of P/NP as a key design element for biomaterials and nanomedicine in vivo and as a powerful tuning strategy for accurate, large-scale NP-based deep proteomic studies.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Proteoma , Proteômica , Nanopartículas/química , Nanomedicina
2.
Proc Natl Acad Sci U S A ; 119(11): e2106053119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275789

RESUMO

SignificanceDeep profiling of the plasma proteome at scale has been a challenge for traditional approaches. We achieve superior performance across the dimensions of precision, depth, and throughput using a panel of surface-functionalized superparamagnetic nanoparticles in comparison to conventional workflows for deep proteomics interrogation. Our automated workflow leverages competitive nanoparticle-protein binding equilibria that quantitatively compress the large dynamic range of proteomes to an accessible scale. Using machine learning, we dissect the contribution of individual physicochemical properties of nanoparticles to the composition of protein coronas. Our results suggest that nanoparticle functionalization can be tailored to protein sets. This work demonstrates the feasibility of deep, precise, unbiased plasma proteomics at a scale compatible with large-scale genomics enabling multiomic studies.


Assuntos
Proteínas Sanguíneas , Aprendizado Profundo , Nanopartículas , Proteômica , Proteínas Sanguíneas/química , Nanopartículas/química , Coroa de Proteína/química , Proteoma , Proteômica/métodos
3.
Nat Chem ; 13(12): 1221-1227, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34750501

RESUMO

The electrochemical conversion of ammonia to dinitrogen in a direct ammonia fuel cell (DAFC) is a necessary technology for the realization of a nitrogen economy. Previous efforts to catalyse this reaction with molecular complexes required the addition of exogenous oxidizing reagents or application of potentials greater than the thermodynamic potential for the oxygen reduction reaction-the cathodic process of a DAFC. We report a stable metal-metal bonded diruthenium complex that spontaneously produces dinitrogen from ammonia under ambient conditions. The resulting reduced diruthenium material can be reoxidized with oxygen for subsequent reactions with ammonia, demonstrating its ability to spontaneously promote both half-reactions necessary for a DAFC. The diruthenium complex also acts as a redox mediator for the electrocatalytic oxidation of ammonia to dinitrogen at potentials as low as -255 mV versus Fc0/+ and operates below the oxygen reduction reaction potential in alkaline conditions, thus achieving a thermodynamic viability relevant for the future development of DAFCs.

4.
Inorg Chem ; 57(16): 10331-10340, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30058805

RESUMO

The paddlewheel complex Ru2(chp)4Cl (1-Cl, chp = 6-chloro-2-oxypyridinate), upon reduction with Zn, has been previously shown to dimerize to [Ru2(chp)4]2 (2), blocking further chemistry at the Ru2(II,II) axial site [ Inorg. Chem. 2015 , 54 , 8571 - 8589 ]. Functionalization of the chp ligand at the 3 and 5 positions with either bromine (dbchpH = 3,5-dibromo-6-chloro-2-pyridone) or trimethylsilyl (TMS) groups (dsichpH = 6-chloro-3,5-bis(trimethylsilyl)-2-pyridone) allows for the preparation of the Ru2(II,II) paddlewheel complexes Ru2(dbchp)4 (3) and Ru2(dsichp)4 (6), respectively, neither of which shows evidence of dimerization. Though the utilization of 3 is limited due to insolubility, complex 6 is soluble even in typically non-coordinating solvents, forming a stable κ1-axial adduct in CH2Cl2 (6-CH2Cl2) and showing evidence of an axial interaction with n-decane. The first example of an axially free Ru2(II,II) complex with a 3A ground state is observed upon crystallization of 6 from benzene (6-C6D6). Complex 6 is accessed via Zn reduction of Ru2(dsichp)4Cl (4-Cl), which along with Ru2(dsichp)4N3 (4-N3), show similar structural and electronic properties to their non-TMS-substituted analogues, 1-Cl and 1-N3. Photolysis of 4-N3 in frozen solution generates Ru2(dsichp)4N (5); no N atom transfer to PPh3 is observed upon room temperature photolysis in fluid solution.

5.
Bioresour Technol ; 198: 755-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454041

RESUMO

This study evaluates the economic feasibility and stochastic dominance rank of eight cellulosic biofuel production pathways (including gasification, pyrolysis, liquefaction, and fermentation) under technological and economic uncertainty. A techno-economic assessment based financial analysis is employed to derive net present values and breakeven prices for each pathway. Uncertainty is investigated and incorporated into fuel prices and techno-economic variables: capital cost, conversion technology yield, hydrogen cost, natural gas price and feedstock cost using @Risk, a Palisade Corporation software. The results indicate that none of the eight pathways would be profitable at expected values under projected energy prices. Fast pyrolysis and hydroprocessing (FPH) has the lowest breakeven fuel price at 3.11$/gallon of gasoline equivalent (0.82$/liter of gasoline equivalent). With the projected energy prices, FPH investors could expect a 59% probability of loss. Stochastic dominance is done based on return on investment. Most risk-averse decision makers would prefer FPH to other pathways.


Assuntos
Biocombustíveis/economia , Celulose , Fermentação , Gasolina/economia , Hidrogênio/economia , Probabilidade , Incerteza
6.
Inorg Chem ; 54(17): 8571-89, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26258535

RESUMO

Reduction of (4,0)-Ru2(chp)4Cl (1) (chp = 6-chloro-2-oxypyridinate) with Zn or FeCl2 yields a series of axial ligand adducts of the Ru2(II,II) species Ru2(chp)4(L), with L = tetrahydrofuran (2), dimethyl sulfoxide (DMSO; 3), PPh3 (4), pyridine (5), or MeCN (6). Zn reduction in noncoordinating solvents such as toluene or CH2Cl2 leads to the dimeric species [Ru2(chp)4]2 (7) or [Ru2(chp)4]2(ZnCl2) (8), whereas addition of strongly σ-donating ligands such as CO causes cleavage of the Ru-Ru bond. Density functional theory (DFT) models of these complexes, the axially free species, and the axial adducts of several other potential ligands (H2O, NH3, CH2Cl2, S-bound DMSO, N2, and CO) indicate that these compounds can be divided into three distinct categories, based on their Ru-Ru bond length and electronic structure. Compounds 2, 3, 5, 6, 7, and 8, the hypothetical axially free species, and adducts of H2O and NH3 fit in Category 1 with a (δ*)(2)(π*)(2) ground state, as indicated by their electronic spectra, magnetic properties, and Ru-Ru bond distances. However, compound 4 and the CH2Cl2 adduct (Category 2) show a pseudo-Jahn-Teller distortion and spectroscopic signs of δ*/π* orbital mixing suggestive of a new electronic ground state intermediate between the (δ*)(2)(π*)(2) and (δ*)(1)(π*)(3) configurations. Category 3 consists of the hypothetical adducts of N2, S-bound DMSO, and CO, all of which are predicted to have a (δ*)(1)(π*)(3) configuration. Electronic spectra were recorded and assigned using time-dependent DFT, allowing assignment of a band in the 10,000-13,000 cm(-1) range as the δ → π* transition. The axial ligand's π-acid character heavily influences the δ*-π* gap, and thereby the ground-state electronic configuration, but not the axial ligand binding strength, which is dictated more by the σ-donor character of the ligands. Thus, this work greatly expands the number of axial ligand adducts known for Ru2(II,II) complexes supported by N,O-donor ligands and provides a predictive theoretical framework for their stability and electronic structures.

7.
Bioresour Technol ; 178: 166-176, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25266684

RESUMO

Recent advances in the thermochemical processing of biomass have resulted in efforts to commercialize several cellulosic biofuel pathways. Until commercial-scale production is achieved, however, techno-economic analysis is a useful methodology for quantifying the economic competitiveness of these pathways with petroleum, providing one indication of their long-term feasibility under the U.S. revised Renewable Fuel Standard. This review paper covers techno-economic analyses of thermochemical cellulosic biofuel pathways in the open literature, discusses and compares their results, and recommends the adoption of additional analytical methodologies that will increase the value of future pathway analyses.


Assuntos
Biocombustíveis/economia , Biotecnologia/economia , Biotecnologia/métodos , Celulose/metabolismo , Temperatura , Modelos Teóricos , Incerteza
9.
Bioresour Technol ; 127: 358-65, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23131659

RESUMO

The economic feasibility of a facility producing monosaccharides, hydrogen and transportation fuels via fast pyrolysis and upgrading pathway was evaluated by modeling a 2000 dry metric ton biomass/day facility using Aspen Plus®. Equipment sizing and cost were based on Aspen Economic Evaluation® software. The results indicate that monosaccharide production capacity could reach 338 metric tons/day. Co-product yields of hydrogen and gasoline were 23.4 and 141 metric tons/day, respectively. The total installed equipment and total capital costs were estimated to be $210 million and $326 million, respectively. A facility internal rate of return (IRR) of 11.4% based on market prices of $3.33/kg hydrogen, $2.92/gal gasoline and diesel, $0.64/kg monosaccharide was calculated. Sensitivity analysis demonstrates that fixed capital cost, feedstock cost, product yields, and product credits have the greatest impacts on facility IRR. Further research is needed to optimize yield of sugar via the proposed process to improve economic feasibility.


Assuntos
Biocombustíveis/economia , Temperatura Alta , Lignina/química , Modelos Econômicos , Monossacarídeos/síntese química , Anaerobiose , Simulação por Computador , Gasolina/análise , Hidrogênio/análise , Método de Monte Carlo , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...